Answer:
Density of 127 I = 
Also, 
Explanation:
Given, the radius of a nucleus is given as
.
where,
- A is the mass number of the nucleus.
The density of the nucleus is defined as the mass of the nucleus M per unit volume V.

For the nucleus 127 I,
Mass, M = 
Mass number, A = 127.
Therefore, the density of the 127 I nucleus is given by

On comparing with the density of the solid iodine,

I’m going to use molasses as an example of a substance.
The mass and volume both change when changing the amount of molasses.
However, the density does not change. This is because the mass and volume increase at the same rate/proportion!
Even though there is more molasses (mass) in test tube A, the molasses also takes up more space (volume). Therefore, the spacing between those tiny particles that make up the molasses is constant (does not change).
The size or amount of a material/substance does not affect its density.
The heat energy transferred by the iron nail is 4680 J
Explanation:
The thermal energy transferred by a substance to another substance is given by the equation

where
m is the mass of the substance
C is its specific heat capacity
is its change in temperature
For the iron nail in this problem, we have:
m = 16 g


So, the amount of heat energy given off by the nail is

where the negative sign indicates that the heat is given off.
Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly
Answer:
The cathode ray is deflected vertically to the fluorescent screen
Explanation:
