Answer:
4
Step-by-step explanation:
I'm pretty sure theres a graph to this so....
The given parabolic graph of quadratic function
To find:What is F(6) for the quadratic function
Solution:We have given graph of quadratic function
there is a different value for Y and a different value for X
For f(6)
here X=6, need to find graph of quadratic function
X=6
f(6)=4
Y=4
Your welcome :)
Answer:
Yes, it is.
Step-by-step explanation:
Answer:
![\sqrt[]{\frac{x+8}{4}}-3](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D-3)
Step-by-step explanation:

First rewrite
as y

Now swap y and x

Add 8 on both sides.


Divide by 4.


Extract the square root on both sides.
![\sqrt[]{\frac{x+8}{4}}=\sqrt[]{(y+3)^2}](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D%3D%5Csqrt%5B%5D%7B%28y%2B3%29%5E2%7D)
![\sqrt[]{\frac{x+8}{4}}=y+3](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D%3Dy%2B3)
Subtract 3 on both sides.
![\sqrt[]{\frac{x+8}{4}}-3=y+3-3](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D-3%3Dy%2B3-3)
![\sqrt[]{\frac{x+8}{4}}-3=y](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D-3%3Dy)
Answer:
12 x^4 + 18 x^3 - 9 x^2 thus D is the correct answer.
Step-by-step explanation:
Expand the following:
3 x^2 (4 x^2 + 6 x - 3)
3 x^2 (4 x^2 + 6 x - 3) = 3 x^2 (4 x^2) + 3 x^2 (6 x) + 3 x^2 (-3):
3 4 x^2 x^2 + 3 6 x^2 x - 3 3 x^2
3 (-3) = -9:
3 4 x^2 x^2 + 3 6 x^2 x + -9 x^2
3 x^2×6 x = 3 x^(2 + 1)×6:
3 4 x^2 x^2 + 3×6 x^(2 + 1) - 9 x^2
2 + 1 = 3:
3 4 x^2 x^2 + 3 6 x^3 - 9 x^2
3×6 = 18:
3 4 x^2 x^2 + 18 x^3 - 9 x^2
3 x^2×4 x^2 = 3 x^4×4:
3×4 x^4 + 18 x^3 - 9 x^2
3×4 = 12:
Answer: 12 x^4 + 18 x^3 - 9 x^2