I agree the answer is B I think so
<h3>☂︎ Answer :- </h3>
<h3>☂︎ Solution :- </h3>
- LCM of 5 , 18 , 25 and 27 = 2 × 3³ × 5²
- 2 and 3 have odd powers . To get a perfect square, we need to make the powers of 2 and 3 even . The powers of 5 is already even .
In other words , the LCM of 5 , 18 , 25 and 27 can be made a perfect square if it is multiplied by 2 × 3 .
The least perfect square greater that the LCM ,
☞︎︎︎ 2 × 3³ × 5² × 2 × 3
☞︎︎︎ 2² × 3⁴ × 5²
☞︎︎︎ 4 × 81 × 85
☞︎︎︎ 100 × 81
☞︎︎︎ 8100
8100 is the least perfect square which is exactly divisible by each of the numbers 5 , 18 , 25 , 27 .
Answer:
3)5x-4y=-3
6x+4y=14
Step-by-step explanation:
The system of equations is given
5x-4y=-3
3x+2y=7
Multiplying both sides of the lower equation by 2, we get
6x + 4y = 14
That means your answer 3)
Answer:
multiply it and you can change it done ez as pie
Step-by-step explanation:
Answer:
The appropriate probability model for X is a Binomial distribution,
X
Bin (<em>n</em> = 5, <em>p</em> = 1/33).
Step-by-step explanation:
The random variable <em>X</em> can be defined as the number of American births resulting in a defect.
The proportion of American births that result in a birth defect is approximately <em>p</em> = 1/33.
A random sample of <em>n</em> = 5 American births are selected.
It is assumed that the births are independent, i.e. a birth can be defective or not is independent of the other births.
In this experiment the success is defined as a defective birth.
The random variable <em>X</em> satisfies all criteria of a Binomial distribution.
The criteria are:
- Number of observations is constant
- Independent trials
- Each trial has only two outcomes: Success and Failure
- Same probability of success for each trial
Thus, the appropriate probability model for X is a Binomial distribution, Bin (<em>n</em> = 5, <em>p</em> = 1/33).