4n, 6b, and -8 are the terms
By drawing the hypotenuse of the shape.
Answer:
16.7% of GMAT scores are 647 or higher
Step-by-step explanation:
The Empirical Rule states that 68% of the values are within 1 standard deviation of the mean(34% above, 34% below). It also considers that 50% of the values are above the mean and 50% are below the mean.
In this problem, we have that the mean
is 547 and that the standard deviation
is 100.
a. What percentage of GMAT scores are 647 or higher?
647 is 1 standard deviation above the mean.
So, 50% of the values are below the mean. Those scores are lower than 647.
Also, there is the 34% of the values that are above the mean and are lower than 647.
So, there is a 50% + 34% = 84% percentage of GMAT scores that are 647 or lower.
The sum of the probabilities must be 100
So, the percentage of GMAT scores that are 647 or higher is 100% - 84% = 16%.
Answer:
2 points
Step-by-step explanation:
10-14=-4
-4+6=2 or
10+6=16
16-14=2
Answer:
1) Increase the sample size
2) Decrease the confidence level
Step-by-step explanation:
The 95% confidence interval built for a sample size of 1100 adult Americans on how much they worked in previous week is:
42.7 to 44.5
We have to provide 2 recommendations on how to decrease the margin of Error. Margin of error is calculated as:

Here,
is the critical z-value which depends on the confidence level. Higher the confidence level, higher will be the value of critical z and vice versa.
is the population standard deviation, which will be a constant term and n is the sample size. Since n is in the denominator, increasing the value of n will decrease the value of Margin of Error.
Therefore, the 2 recommendations to decrease the Margin of error for the given case are:
- Increase the sample size and make it more than 1100
- Decrease the confidence level and make it lesser than 95%.