Answer:
if i were you i would try to do the work because if you let someone else you wont be able to understand the question
Answer:
Explanation:
Initial speed, v = 10 x 10^3 m/s
Mass of the earth, M = 6 x 10^24 kg
Radius of the earth, R = 6.4 x 10^6 m
Maximum from the surface of earth, h = ?
Let m = Mass of the projectile
Solution:
Potential energy at maximum height = ( Potential + Kinetic energy ) at the surface



=
=



Answer:
Law of conservation of momentum states that. For two or more bodies in an isolated system acting upon each other, their total momentum remains constant unless an external force is applied. Therefore, momentum can neither be created nor destroyed.
Explanation:
Hope it helps
Answer:
1) λ < 2d, 2) nfrared imaging technique, 3) each color there is a different index of refraction
Explanation:
We are going to answer the three questions
1) When x-rays pass through matter in order to be dispersed, their wavelength must be of the order of the length of separation in the atoms and molecules of the body, in solid bones this length is similar and they scatter and reflect the x-rays therefore they can be observed, the fat and the soft tissue have a much greater separation therefore the x-rays cannot be reflected and consequently it is not observable by this technique.
2) At airports they use the infrared imaging technique, where the image is taken for the infrared wavelength, which is the heat part of the electromagnetic spectrum; consequently, when the image is viewed, the hottest areas appear brighter and, since when a person has a virus, his temperature rises, his temperature rises, it is possible to observe people with a higher temperature.
3) when white light hits a prism it is refracted with the equation
n₁ sin θ₁ = n₂ sin θ₂
where the incidence of refraction depends on the wavelength, therefore for each color there is a different index of refraction and consequently the light is separated in its different colors.
Answer:
When object is placed between the focus (F) and pole (P) of a concave mirror, magnified and erect image of the object is formed on the back of the mirror.
When object is placed between the centre of curvature and the principal focus of a concave mirror, magnified and inverted image is formed in front of the mirror.
Explanation: