Answer:
Conduction occurs when a substance is heated, particles will gain more energy, and vibrate more. These molecules then bump into nearby particles and transfer some of their energy to them. This then continues and passes the energy from the hot end down to the colder end of the substance.
Explanation:
pls make me brainliest
Answer:
v_max = (1/6)e^-1 a
Explanation:
You have the following equation for the instantaneous speed of a particle:
(1)
To find the expression for the maximum speed in terms of the acceleration "a", you first derivative v(t) respect to time t:
(2)
where you have use the derivative of a product.
Next, you equal the expression (2) to zero in order to calculate t:
![a[(1)e^{-6t}-6te^{-6t}]=0\\\\1-6t=0\\\\t=\frac{1}{6}](https://tex.z-dn.net/?f=a%5B%281%29e%5E%7B-6t%7D-6te%5E%7B-6t%7D%5D%3D0%5C%5C%5C%5C1-6t%3D0%5C%5C%5C%5Ct%3D%5Cfrac%7B1%7D%7B6%7D)
For t = 1/6 you obtain the maximum speed.
Then, you replace that value of t in the expression (1):

hence, the maximum speed is v_max = ((1/6)e^-1)a
Answer:
t = 36π seconds
Explanation:
For resolving this problem, we are going to consider a representative stadium of the United States. The Mercedes-Benz Stadium located in Atlanta, Georgia has an average radius of 90 m.
Then, its circumference measures:
L = 2πr
L = 2π(90)
L = 180π m
First, we estimate the wave's velocity: the average width of an person is 0.5 m, then the velocity is:
v = x/t
Where x: person's width
t: time
v = 0.5/0.1 = 5 m/s
The time required for the pulse to make one circuit around the stadium is:
t = x/v = 180π/5 = 36π seconds
The water was heavier since it was more concentrated
Acceleration = change in velocity/change in time
= (30 - 20) / 10 - 0
= 10 / 10
Acceleration = 1 m/s²