<span>137200000 watts
or 137200 kilowatts
The formula for power is
P= dhrg
Where
P = Power in watts
d = density of water (~1000 kg/m^3)
h = height in meters
r = flow rate in cubic meters per second,
g = acceleration due to gravity of 9.8 m/s^2,
Plugging in the known values, we get
P = 1000 kg/m^3 * 80 m * 175 m^3/s * 9.8 m/s^2
P = 80000 kg/m^2 * 175 m^3/s * 9.8 m/s^2
P = 14000000 kg m/s * 9.8 m/s^2
P = 137200000 kg m^2/s^3
P = 137200000 watts
or 137200 kilowatts
The above figure assumes 100% efficiency which is impossible. A good efficiency would be 90% so the actual power available would be close to 0.90 * 137200 = 123480 kilowatts</span>
Answer:
Calculate the wavelength associated with an electron with energy 2000 eV.
Sol: E = 2000 eV = 2000 × 1.6 × 10–19 J
Complete Question:
In the same configuration of the previous problem 3, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length a = 13.5 cm. Each wire carries 7.50 A, and the currents are out of the page in wires 1 and 4 and into the page in wires 2 and 3.
a) Draw a diagram in a (x,y) plane of the four wires with wire 4 perpendicular to the origin. Indicate the current's directions.
b) Draw a diagram of all magnetic fields produced at the position of wire 3 by the other three currents.
c) Draw a diagram of all magnetic forces produced at the position of wire 3 by the other three currents.
d) What are magnitude and direction of the net magnetic force per meter of wire length on wire 3?
Answer:
force, 1.318 ₓ 10⁻⁴
direction, 18.435°
Explanation:
The attached file gives a breakdown step by step solution to the questions
Answer:
The wavelength of the radio wave will be 3.271 m
Explanation:
We have given frequency of the radio signal 
Speed of the light 
We have to find the wavelength of the radio signal
We know that wavelength is given by 
So the wavelength of the radio wave will be 3.271 m
It must displace at least 500 milliliters (0.5 liter) of water, in order to float in water.