Answer:
Step-by-step explanation:
Given the explicit function as
f(n) = 15n+4
The first term of the sequence is at when n= 1
f(1) = 15(1)+4
f(1) = 19
a = 19
Common difference d = f(2)-f(1)
f(2) = 15(2)+4
f(2) = 34
d = 34-19
d = 15
Sum of nth term of an AP = n/2{2a+(n-1)d}
S20 = 20/2{2(19)+(20-1)15)
S20 = 10(38+19(15))
S20 = 10(38+285)
S20 = 10(323)
S20 = 3230.
Sum of the 20th term is 3230
For the explicit function
f(n) = 4n+15
f(1) = 4(1)+15
f(1) = 19
a = 19
Common difference d = f(2)-f(1)
f(2) = 4(2)+15
f(2) = 23
d = 23-19
d = 4
Sum of nth term of an AP = n/2{2a+(n-1)d}
S20 = 20/2{2(19)+(20-1)4)
S20 = 10(38+19(4))
S20 = 10(38+76)
S20 = 10(114)
S20 = 1140
Sum of the 20th terms is 1140
86
86*10= 860
86*9= 774
860+774= 1634
Answer:
D. about 8.5 mi
Step-by-step explanation:
To go from Aesha to Josh, you go 6 units right and 6 units up.
Each unit is a mile, so you go 6 miles right and 6 miles up.
Think of each 6 mile distance as a leg of a right triangle, and the direct distance from one place to the other as the hypotenuse of the right triangle. Use the Pythagorean theorem to find the length of the hypotenuse.
a^2 + b^2 = c^2
The 6-mile legs are a and b. c is the hypotenuse.
(6 mi)^2 + (6 mi)^2 = c^2
c^2 = 36 mi^2 + 36 mi^2
c^2 = 72 mi^2
c = sqrt(72) mi
c = sqrt(36 * 2) mi
c = 6sqrt(2) mi
c = 6(1.4142) mi
c = 8.5 mi
Answer:
$7
because theres 4 quarters in a mile so one mile would equal to $2 bc
0.50 x 4 = $2
and you have to go 2 miles so
$2 + $2 = $4
then you add the the cost of the taxi so
$4+ $3
= $7