The perimeter of the entire rectangle is 12 cm.
Answer:
a) 11%
b) 56%
Step-by-step explanation:
a) A= πr^2 6^2π= 36π A= 18^2π = 324π
36π/324π = .111111111111111111111111 or 11%
remember to cancel out the pi symbols when you are showing your work
(put a line across the pi symbols when dividing)
b) A= πr^2 18^2 π = 324π
A= πr^2 12^2π = 144π
324 – 144 = 180
180π/324π = .5555555555555555555555556 or 56%
remember to cancel out the pi symbols when you are showing your work
(put a line across the pi symbols when dividing)
Answer:
5 or 6
Step-by-step explanation:
Answer:
3. 
2<em>C.</em> 
2<em>B.</em> 
2<em>A.</em> 
1. ![\displaystyle Set-Builder\:Notation: [x|7, 0 ≠ x] \\ Interval\:Notation: (-∞, 0) ∪ (0, 7) ∪ (7, ∞)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Set-Builder%5C%3ANotation%3A%20%5Bx%7C7%2C%200%20%E2%89%A0%20x%5D%20%5C%5C%20Interval%5C%3ANotation%3A%20%28-%E2%88%9E%2C%200%29%20%E2%88%AA%20%280%2C%207%29%20%E2%88%AA%20%287%2C%20%E2%88%9E%29)
Step-by-step explanation:
3. <em>See</em><em> </em><em>above</em>.
2<em>C</em>. The keyword is ratio, which signifies division, so you would choose "III.".
2<em>B</em>. The keyword is percent, which signifies multiplication of a ratio by 100, so you would choose "I.".
2<em>A</em>. The keyword is total, which signifies addition, so you would choose "II.".
1. Base this off of the denominator. Knowing that the denominator CANNOT be zero, you will get this:
![\displaystyle x^2 - 7x \\ x[x - 7] = 0; 7, 0 = x \\ \\ Set-Builder\:Notation: [x|7, 0 ≠ x] \\ Interval\:Notation: (-∞, 0) ∪ (0, 7) ∪ (7, ∞)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%5E2%20-%207x%20%5C%5C%20x%5Bx%20-%207%5D%20%3D%200%3B%207%2C%200%20%3D%20x%20%5C%5C%20%5C%5C%20Set-Builder%5C%3ANotation%3A%20%5Bx%7C7%2C%200%20%E2%89%A0%20x%5D%20%5C%5C%20Interval%5C%3ANotation%3A%20%28-%E2%88%9E%2C%200%29%20%E2%88%AA%20%280%2C%207%29%20%E2%88%AA%20%287%2C%20%E2%88%9E%29)
I am joyous to assist you anytime.
X² + c is actually a quadratic function.
And x² + c = 0, it usually has two zeros which are solutions.
But for when c = 0,
x² + c = 0
x² + 0 = 0
x² = 0
Taking the square root of both sides.
x = 0. Here it only has one zero.
So the function x² + c, only has one root for c = 0.