Answer:
Van der waal's force of attraction
Explanation:
Van der waal's force of attraction
Forces of Van der Waals involve attraction and repulsion among atoms, particles, and surfaces as well as many other intermolecular forces. These vary from covalent and ionic bonding in that they are caused by similarities in surrounding particle fluctuating polarizations (a result of quantum dynamics).
Answer:

Explanation:
Molarity is a measure of concentration in moles per liter.

The solution has a molarity of 1.2 M or 1.2 moles per liter. There are 4.0 moles of NaCl, the solute. We don't know the liters of solution, so we can use x.
- molarity= 1.2 mol/L
- moles of solute= 4.0 mol
- liters of solution =x
Substitute the values into the formula.

Since we are solving for x, we must isolate the variable. Begin by cross multiply (multiply the 1st numerator and 2nd denominator, then the 1st denominator and 2nd numerator.



x is being multiplied by 1.2 moles per liter. The inverse of multiplication is division, so divide both sides by 1.2 mol/L


The units of moles (mol) will cancel.


The original measurements both have 2 significant figures, so our answer must have the same. For the number we found, this is the tenths place.
The 3 in the hundredth place tells us to leave the 3 in the tenths place.

Approximately <u>3.3 liters of solution</u> are needed to make a 1.2 M solution with 4.0 moles of sodium chloride.
I've actually used the magnet test to determine if a gold necklace of mine was real or not. If the gold item aka the crown is attracted to a magnet, it is definitely not real gold.if it isn't then its real gold.
Answer:
1 liter (L) = 1000 milliliters (mL)
Explanation:
Answer:
Sea breeze moves from the areas of higher pressure on the water in the direction of the areas of lower pressure on land.
Explanation:
Sea breeze moves from the areas of higher pressure on the water in the direction of the areas of lower pressure on land. Whereas, land breeze blows from the areas of higher pressure on land to the areas of lower pressure on water.