The options for given question are as follow,
1) Methane molecules show hydrogen bonding.
<span>2) Ammonia molecules show hydrogen bonding. </span>
<span>3) Methane has stronger hydrogen bonding than ammonia. </span>
<span>4) Both the compounds do not show hydrogen bonding. </span>
<span>5) Both the compounds have strong hydrogen bonding.
</span>
Answer:
Correct answer is Option-2 (Ammonia molecules show hydrogen bonding).
Explanation:
Hydrogen bond interactions are formed when a partial positive hydrogen atom attached to most electronegative atom of one molecule interacts with the partial negative most electronegative element of another molecule. So, in Ammonia hydrogen gets partial positive charge as nitrogen is highly electronegative. While the C-H bond in Methane is non-polar and fails to form hydrogen bond interactions.
@pandamille help her please!!!!
Answer:
the general equation is: A + X → AX. Where a single compound on the reactant side breaks down into two or more products during a chemical change. The general equation is AX → A + X.
Explanation:
Answer: a. +2, cation and magnesium ion .
b. -1, anion, chloride
c. -2, anion, oxide
d. +1. cation , potassium ion
Explanation:
When an atom accepts an electron negative charge is created on atom and is called as anion.
When atom loses an electron positive charge is created on atom and is called as cation.
Magnesium (Mg) with atomic number of 12 has electronic configuration of 2,8,2 and thus it can lose 2 electrons to form
cation and becomes magnesium ion.
Chlorine (Cl) with atomic number of 17 has electronic configuration of 2,8,7 and thus it can gain 1 electron to form
anion and becomes chloride.
Oxygen (O) with atomic number of 8 has electronic configuration of 2,6 and thus it can gain 2 electrons to form
anion and becomes oxide.
Potassium (K) with atomic number of 19 has electronic configuration of 2,8,8,1 and thus it can lose 1 electron to form
cation and becomes potassium ion.
The temperature of a reaction causes its rate of reaction to increase because the heat inputted into the solution excites the electrons that make up the solution, therefore making them move faster, colliding more often with other molecules of the solution. This increase in collision rates causes the rate of reaction to increase.