D.
Gastropods live in every conceivable habitat
Answer: 22 kJ amount of energy is released in the following reaction.
Explanation: There are two types of reaction on the basis of amount of heat absorbed or released.
1. Endothermic reactions: These are the type of reactions in which reactants absorb heat to form the products. The energy of the reactants is less than the energy of the products.
2. Exothermic reactions: These are the type of reactions in which heat is released from the chemical reactions. The energy of the products is less than the reactants.
Sign convention for : This value is negative for exothermic reactions and positive for endothermic reactions.
For the given chemical reaction,
Energy of the products is less than the energy of the reactants, Hence, this reaction will be a type of exothermic reaction and energy will be released during this chemical change.
Amount of energy released = (350 - 372) kJ = -22kJ
Negative sign symbolizes the energy is being released. So, 22 kJ amount of energy is released in the following reaction.
Answer:
537.68 torr.
Explanation:
- We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and V are constant, and have different values of P and T:
<em>(P₁T₂) = (P₂T₁).</em>
P₁ = 485 torr, T₁ = 40°C + 273 = 313 K,
P₂ = ??? torr, T₂ = 74°C + 273 = 347 K.
∴ P₂ = (P₁T₂)/(P₁) = (485 torr)(347 K)/(313 K) = 537.68 torr.
C.) hydrogen bonding interactions.
Answer:
See explanation.
Explanation:
Hello!
In this case, when having the cationic and anionic species with the specified charges, in order to abide by the net charge rule, we need to exchange the charges in the form of subscripts and without the sign, just as shown below:
Thus, for all the given combinations, we obtain:
- Y⁻
- Y²⁻
- Y³⁻
Best regards!