Phosphorus!!!! Hope this helps
Answer:107.1 g, 124.1 g
Explanation:
The equation of the reaction is;
Al2S3(s) + 6H20(l) ----> 2Al(OH)3(s) + 3H2S(g)
Hence;
For Al2S3
Number of moles= reacting mass/molar mass
Number of moles = 158g/150gmol-1 =1.05 moles
If 1 mole of Al2S3 yields 3 moles of H2S
1.05 moles of Al2S will yield
1.05 × 3/1 = 3.15 moles
Mass of H2S = 3.15moles × 34 gmol-1 = 107.1 g
For water
Number of moles of water = 131g/18gmol-1= 7.3 moles
6 moles of water yields 3 moles of H2S
7.3 moles of water will yield 7.3 × 3/6 = 3.65 moles of H2S
3.65 moles × 34 gmol-1 =124.1 g
Answer:
The overview of the subject is outlined underneath in the summary tab.
Explanation:
- The molar ratio seems to be essentially a balanced chemical equilibrium coefficient that implies or serves as a conversion factor for the product-related reactants.
- This ratio just says the reactant proportion which reacts, but not the exact quantity of the reacting product. Consequently, the molar ratio should only be used to provide theoretical instead of just a definite mass ratio.
Compound 1: Sodium borohydride
In sodium borohydride (NaBH4), B is a central metal.
Electronic configuration of B is 1s2 2s2 2p1.
B undergoes sp3 hybridization in NaBH4, to generate 4 hybrid orbitals. These hybrid orbitals, forms sigma bond with 4 'H' atoms. Due to this, the structure of sodium borohydride in tetrahedral.
........................................................................................................................
Compound 2: B<span>oron trifluoride
</span>In boron trifluoride (BF3), B is a central metal.
Electronic configuration of B is 1s2 2s2 2p1.
B undergoes sp2 hybridization in NaBH4, to generate 3 hybrid orbitals. These hybrid orbitals, forms sigma bond with 3 'H' atoms. Due to this, the structure of <span>boron trifluoride</span> is <span>triangular planner</span>.