1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vaselesa [24]
2 years ago
7

What is the final temp of

Chemistry
1 answer:
Katen [24]2 years ago
5 0
Hdhdhebsjqkkhey sajen
You might be interested in
Student follow up
sleet_krkn [62]

Answer:

Magnesium and calcium belong to the second group i. e. alkaline earth metals. They are known as earth metals because they are extracted from the earth. They are very reactive elements. Their reactivity increases when we go from top to bottom because the outermost electrons goes farther from the nucleus i. e. atomic radius increases so less energy is needed for its removal.

8 0
3 years ago
11. What is the specific heat of a substance with a mass of 25.5 g that requires 412 J
Romashka-Z-Leto [24]

Answer:

297 J

Explanation:

The key to this problem lies with aluminium's specific heat, which as you know tells you how much heat is needed in order to increase the temperature of

1 g

of a given substance by

1

∘

C

.

In your case, aluminium is said to have a specific heat of

0.90

J

g

∘

C

.

So, what does that tell you?

In order to increase the temperature of

1 g

of aluminium by

1

∘

C

, you need to provide it with

0.90 J

of heat.

But remember, this is how much you need to provide for every gram of aluminium in order to increase its temperature by

1

∘

C

. So if you wanted to increase the temperature of

10.0 g

of aluminium by

1

∘

C

, you'd have to provide it with

1 gram



0.90 J

+

1 gram



0.90 J

+

...

+

1 gram



0.90 J



10 times

=

10

×

0.90 J

However, you don't want to increase the temperature of the sample by

1

∘

C

, you want to increase it by

Δ

T

=

55

∘

C

−

22

∘

C

=

33

∘

C

This means that you're going to have to use that much heat for every degree Celsius you want the temperature to change. You can thus say that

1

∘

C



10

×

0.90 J

+

1

∘

C



10

×

0.90 J

+

...

+

1

∘

C



10

×

0.90 J



33 times

=

33

×

10

×

0.90 J

Therefore, the total amount of heat needed to increase the temperature of

10.0 g

of aluminium by

33

∘

C

will be

q

=

10.0

g

⋅

0.90

J

g

∘

C

⋅

33

∘

C

q

=

297 J

I'll leave the answer rounded to three sig figs, despite the fact that your values only justify two sig figs.

For future reference, this equation will come in handy

q

=

m

⋅

c

⋅

Δ

T

, where

q

- the amount of heat added / removed

m

- the mass of the substance

c

- the specific heat of the substance

Δ

T

- the change in temperature, defined as the difference between the final temperature and the initial temperature of the sample

6 0
3 years ago
The atomic mass of Cu is 63.5. Find its electrochemical equivalent​
FrozenT [24]

Answer:

The electrochemical equivalent of copper, Cu, is 3.29015544 × 10⁻⁷ g/C

Explanation:

The given parameters are;

The element for which the electrochemical equivalent is sought = Copper

The atomic mass of copper = 63.5

The electrochemical equivalent, 'Z', of an element or a substance is the mass, 'm', of the element or substance deposited by one coulomb of electricity, which is equivalent to a 1 ampere current flowing for a period of 1 second

Mathematically, we have;

m = Z·I·t = Z·Q

We have;

Cu²⁺ (aq) + 2·e⁻ → Cu

Therefore, one mole of Cu, is deposited by 2 moles of electrons

The charge carried one mole of electrons = 1 Faraday = 96500 C

∴ The charge carried two moles of electrons, Q = 2 × 96500 C = 193,000 C

Given that the mass of an atom of Cu = 63.5 a.m.u., the mass of one mole of Cu, m = 63.5 g

Z = \dfrac{m}{Q} = \dfrac{63.5 \ g}{193,000 \ C} = 3.29015544 \times 10^{-4} \, g \cdot C^{-1}

∴ Z = 3.29015544 × 10⁻⁴ g/C = 3.29015544 × 10⁻⁷ g/C

The electrochemical equivalent of copper, Cu, is Z = 3.29015544 × 10⁻⁷ g/C

7 0
3 years ago
Give an example based upon particle argument​
lesya692 [45]

Answer:

squeezing syringes contain gas

7 0
3 years ago
How many liters of a 2.0 M solution of HCl do you need to have 8.0 moles of HCI?
kakasveta [241]

Answer:

1M HCl: add 1mol/12M = 83 ml conc. HCl to 1L of water or 8.3ml to 100ml.

2M HCl: add 2mol/12M = 167 ml conc. HCl to 1L of water or 16.7ml to 100ml.

4 0
3 years ago
Other questions:
  • How to tell how many solutions a system has khan academy?
    14·1 answer
  • During nuclear fusion on a protostar, ___ fuse to form helium atoms
    14·1 answer
  • Which of the following is NOT an example of a physical change? *
    5·1 answer
  • CHEESE TOES ARE KING
    15·1 answer
  • Use Hess's Law and equations B and C to find the enthalpy change for equation A. A) 2 C2H4 + H2O à C4H9OH ΔH = ??? B) 2 C2H4 + 6
    5·1 answer
  • Look at Periodic Table. Which
    13·1 answer
  • A student mixes a white solid and a clear liquid together. The solid dissolves into the liquid is evidence of a chemical reactio
    11·1 answer
  • ¿Cuál es la diferencia entre energía térmica y energía eléctrica?
    6·1 answer
  • Which property is NOT a physical property?
    12·2 answers
  • Help this is due today!!!
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!