Sulfur is a group six element in period 3 with atomic number 16 and an electronic configuration of 2:8:6. Therefore, to attain a stable configuration it requires to gain two electrons forming an ion with a charge of -2. The negative charge is due to the gaining of electrons.
C. Formation of a new substance
There are two terms
a) accuracy : it relates to the exactness of an answer that how an answer is close to the actual answer or actual reading
So 104.6 is accurate
b) Precision : This is related to the closeness of different readings with each other
The first reading is 103.7 and the second one is 108.4 so the second reading is quite different from the first reading so it cannot be called as precised
Again 105.8 has good difference from the second reading hence again this is not precised
However the last reading 104.6 is quite near to 105.8 so 104.6 can be called as precise
Explanation:
firstly firstly we are to calculate the number of moles of ammonia and using the mole concept of two moles of ammonia gives one mole of ammonium sulphate we can calculate the number of moles of ammonium sulphate and mass
from n=m/mr
Complete question:
The decomposition of SO2Cl2 is first order in SO2Cl2 and has a rate constant of 1.44×10⁻⁴ s⁻¹ at a certain temperature.
If the initial concentration of SO2Cl2 is 0.125 M , what is the concentration of SO2Cl2 after 210 s ?
Answer:
After 210 s the concentration of SO2Cl2 will be 0.121 M
Explanation:
![ln\frac{[A_t]}{[A_0]} =-kt](https://tex.z-dn.net/?f=ln%5Cfrac%7B%5BA_t%5D%7D%7B%5BA_0%5D%7D%20%3D-kt)
where;
At is the concentration of A at a time t
A₀ is the initial concentration of A
k is rate constant = 1.44×10⁻⁴ s⁻¹
t is time
ln(At/A₀) = -( 1.44×10⁻⁴)t
ln(At/0.125) = -( 1.44×10⁻⁴)210
ln(At/0.125) = -0.03024

At/0.125 = 0.9702
At = 0.125*0.9702
At = 0.121 M
Therefore, after 210 s the concentration of SO2Cl2 will be 0.121 M