1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Grace [21]
3 years ago
13

Parallel Lines Cut by a Transversal: Maze

Mathematics
1 answer:
CaHeK987 [17]3 years ago
7 0

Start from Start Here square, the pointer to the next question to resolve is given by the solution to the equation in the current square

The values of the Maze are as follows;

  1. x = 10
  2. x = 8
  3. x = -9
  4. x = 5
  5. x = 11
  6. x = 3
  7. x = -5
  8. x = 9
  9. x = 7
  10. x = -7

Reason:

The solutions are;

10·x + 15 = 12·x - 5  by alternate interior angles theorem

  • ∴ x = 10

6·x + 6 = 5·x + 14 by alternate exterior angles theorem

  • ∴ x = 8

x + 109 = 100 by corresponding angles theorem

  • ∴ x = -9

11·x + 5 + 120° = 180° by same side interior angles theorem

  • ∴ x = 5

11·x - 1 = 10·x + 10 by corresponding angles theorem

  • ∴ x = 11

35·x + 5 = 110 by corresponding angles theorem

  • ∴ x = 3

x + 85 + x + 105 = 180 by same side interior angles theorem

  • ∴ x = -5

7·x - 3 + 12·x + 12 = 180° by same side interior angles theorem

  • ∴ x = 9

19·x - 3 = 130 by alternate interior angles theorem

  • ∴ x = 7

x + 67 = 60 by alternate interior angles theorem

  • x = -7

Learn more here:

brainly.com/question/10623667

brainly.com/question/11708384

You might be interested in
6. Use the Rational Root (Zero) Theorem to list all the possible real roots (zeros).
maks197457 [2]
The left side
−
52
-
52
does not equal to the right side
0
0
, which means that the given statement is false.
False
8 0
3 years ago
Find the square. (1/4A + 1/4B)^2<br><br> a) 1/16A^2 + 1/8AB + 1/16B^2<br> b) 1/4A^2 + 1/8AB + 1/4B^2
alisha [4.7K]

(a + b)^2 = a^2 + 2ab + b^2

(\dfrac{1}{4}A + \dfrac{1}{4}B)^2 =

= \dfrac{1}{16}A^2 + \dfrac{1}{8}AB + \dfrac{1}{16}B^2

Answer: A.

Another way to solve by factoring 1/4.

(\dfrac{1}{4}A + \dfrac{1}{4}B)^2 =

= [\dfrac{1}{4}(A + B)]^2

= (\dfrac{1}{4})^2(A + B)^2

= \dfrac{1}{16}(A^2 + 2AB + B^2)

= \dfrac{1}{16}A^2 + \dfrac{1}{16}2AB + \dfrac{1}{16}B)^2

= \dfrac{1}{16}A^2 + \dfrac{1}{8}AB + \dfrac{1}{16}B)^2

6 0
3 years ago
Read 2 more answers
Factor. (6x+4) <br><br><br> 3(2x+1) <br><br> 3x + 2 <br><br> 2(3x+2) <br><br> 2(x+2)
jok3333 [9.3K]

Answer:

2(3x+2) is your answer because you factor out 2. The number 2 is a factor of both 6 and 4 (2*3=6 and 2*2=4).


5 0
3 years ago
HELP PLS HERE IS IT NEED IT
Zielflug [23.3K]

Step-by-step explanation:

Total students = 35

Probability that a student earns A B or C = 5 + 10 + 15 = 30

35/30 = 7/6

3 0
3 years ago
Eva payrolls for on a number cube and the number of cubes roll 24 times then what is a reasonable prediction for the number of s
Allushta [10]

Answer:

The reasonable prediction for successful rolls is 4.

Step-by-step explanation:

Assuming the rolling cube  is a fair 6 sided cube, so the probability of success of one roll is given as

P(Success)=\dfrac{Number\ of\ successful\ events}{Number\ of\ total\ events}

P(Success)=\dfrac{1}{6}

The total success is given as

P(Total\ Success)=P(Success)\times Number\ of\ events

For 24 rolls it is given as

P(Total\ Success)=P(Success)\times Number\ of\ events\\P(Total\ Success)=\dfrac{1}{6}\times 24\\P(Total\ Success)=4

So the reasonable prediction for successful rolls is 4.

3 0
2 years ago
Other questions:
  • In simplest radical form what are the solutions to the quadratic equation 0=-3x^2-4x+5
    12·2 answers
  • What type of function is shown above?
    13·1 answer
  • Help ASAP Please!! 20 points!! Thank you!! This is highly appreciated!!!
    15·1 answer
  • How to solve 7x + 7x = -3 + x
    10·2 answers
  • Please help me out!!!!!!!!!
    5·1 answer
  • Can someone help with 8 im confused thanks
    13·1 answer
  • a plastic puzzle in the shape of a triangular prism has bases that are equilateral triangles with side lengths of 4 inches and a
    12·1 answer
  • Help, I really, really need help, just for anyone to know Im crying while saying this, jk but please help me
    15·2 answers
  • Which of the following best describes the expression 7(y + 5)?
    8·1 answer
  • Solve the given differential equation by finding, as in Example 4 from Section 2.4, an appropriate integrating factor. y(6x y 6)
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!