Given:
The bases of trapezoid measuring 4 m and 12 m.
To find:
The median of the trapezoid.
Solution:
The median of the trapezoid is the average of its bases.

The bases of trapezoid measuring 4 m and 12 m. So, the median of the trapezoid is:



Therefore, the correct option is C.
Answer:
m<N = 76°
Step-by-step explanation:
Given:
∆JKL and ∆MNL are isosceles ∆ (isosceles ∆ has 2 equal sides).
m<J = 64° (given)
Required:
m<N
SOLUTION:
m<K = m<J (base angles of an isosceles ∆ are equal)
m<K = 64° (Substitution)
m<K + m<J + m<JLK = 180° (sum of ∆)
64° + 64° + m<JLK = 180° (substitution)
128° + m<JLK = 180°
subtract 128 from each side
m<JLK = 180° - 128°
m<JLK = 52°
In isosceles ∆MNL, m<MLN and <M are base angles of the ∆. Therefore, they are of equal measure.
Thus:
m<MLN = m<JKL (vertical angles are congruent)
m<MLN = 52°
m<M = m<MLN (base angles of isosceles ∆MNL)
m<M = 52° (substitution)
m<N + m<M° + m<MLN = 180° (Sum of ∆)
m<N + 52° + 52° = 180° (Substitution)
m<N + 104° = 180°
subtract 104 from each side
m<N = 180° - 104°
m<N = 76°
168=-8x
-8 -x
-21 = x
Division, 168 divided by -8
Answer:
x > -7
Step-by-step explanation:
Step 1: Translate
Twice a number = 2x
Six more = + 6
At least = >
-8 = -8
Step 2: Write out inequality
2x + 6 > -8
Step 3: Solve
2x > - 14
x > -7
Answer:
B) ASA
Step-by-step explanation:
The ASA (Angle-Side-Angle) postulate states that if two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent. (The included side is the side between the vertices of the two angles)
In this case, angle U, side UY and angle Y are congruent to angle U, side UW and angle W