ur answer to this question is -6
Two positive integers have gcd (a, b) = 15 and lcm (a, b) = 90. Those two numbers are 15 and 90 or 30 and 45.
Suppose we have 2 positive integers, a and b, then:
gcd (a, b) = the greatest common divisor = common prime factors of a and b
lcm (a, b) = the least common multiple = multiplication of the greatest common prime factors of a and b
In the given problem:
gcd (a, b) = 15
prime factorization of 15:
15 = 3 x 5
Hence,
a = 3 x 5 x ....
b = 3 x 5 x ....
lcm (a, b) = 90
prime factorization of 90:
90 = 3 x 5 x 2 x 3
Therefore the possible pairs of a and b are:
Combination 1:
a = 3 x 5 = 15
b = 3 x 5 x 2 x 3 = 90
Combination 2:
a = 3 x 5 x 2 = 30
b = 3 x 5 x 3 = 35
We can conclude the two integers are 15 and 90 or 30 and 45.
Learn more about gcd here:
brainly.com/question/16969353
#SPJ4
Hi there!
For congruent triangles, all angle measures and sides are congruent. So, if you look at the other triangle, and find the corresponding side, it will be the same measure.
Hope this helps!! :)
If there's anything else that I can help you with, please let me know!
Answer:
x= 4
Step-by-step explanation:
40x-20=100+10x
Subtract 10x and add 20 both sides:
30x= 120
x=4