Answer:
he shortest distance from the point E to a side of square ABCD is 0.293
Step-by-step explanation:
The question parameters are
Shape of figure ABCD = Square
Point E lies on the diagonal line AC
The length of the segment AE = 1
Therefore, we have;
Length of AC = √(AB² + CD²) = √(1² + 1²) = √2
Hence, the point E is closer to the point C and the closest distance to a side from E is the perpendicular from the point E to BC at point E' or to CD at poit E'' which is found as follows;
AC is a bisector of ∠DAB, hence;
∠DAC = 45° = ∠CAE'
EE' = EC × cos(45°)
EC = AC - AE = √2 - 1
Therefore;
EE' = (√2 - 1) × cos(45°) = (√2 - 1) × (√2)/2 = 1 - (√2)/2 = 0.293
Hence, the shortest distance from the point E to a side of square ABCD = 0.293.
Answer:
13
Step-by-step explanation:
Calculate the distance d using the distance formula
d = 
with (x₁, y₁ ) = (- 4, - 6) and (x₂, y₂ ) = (- 9, 6)
d = 
= 
= 
= 
= 13
Answer: if it’s median write all numbers and cross till you get to the middle
Step-by-step explanation:
Answer:
t = 130s
Step-by-step explanation:





If the speed signal sent was actually less, meaning that it would take more time to signal arrives from Earth to Mars. The lower the speed, the higher the time.