By the factor theorem, if x + 3 is a factor of f(x) = -3x^3 + 6x^2 + 6x + 9, then f(-3) = 0
f(-3) = -3(-3)^3 + 6(-3)^2 + 6(-3) + 9 = -3(-27) + 6(9) - 18 + 9 = 81 + 54 - 9 = 126.
Therefore, x + 3 is not a factor of the given function
Answer:
dont khan academy
Step-by-step explanation:
idk
why
u
cheet
Step-by-step explanation:
True...it was Answer but not in always
1)
here, we do the left-hand-side
![\bf [sin(x)+cos(x)]^2+[sin(x)-cos(x)]^2=2 \\\\\\\ [sin^2(x)+2sin(x)cos(x)+cos^2(x)]\\\\+~ [sin^2(x)-2sin(x)cos(x)+cos^2(x)] \\\\\\ 2sin^2(x)+2cos^2(x)\implies 2[sin^2(x)+cos^2(x)]\implies 2[1]\implies 2](https://tex.z-dn.net/?f=%5Cbf%20%5Bsin%28x%29%2Bcos%28x%29%5D%5E2%2B%5Bsin%28x%29-cos%28x%29%5D%5E2%3D2%0A%5C%5C%5C%5C%5C%5C%5C%0A%5Bsin%5E2%28x%29%2B2sin%28x%29cos%28x%29%2Bcos%5E2%28x%29%5D%5C%5C%5C%5C%2B~%20%5Bsin%5E2%28x%29-2sin%28x%29cos%28x%29%2Bcos%5E2%28x%29%5D%0A%5C%5C%5C%5C%5C%5C%0A2sin%5E2%28x%29%2B2cos%5E2%28x%29%5Cimplies%202%5Bsin%5E2%28x%29%2Bcos%5E2%28x%29%5D%5Cimplies%202%5B1%5D%5Cimplies%202)
2)
here we also do the left-hand-side
![\bf \cfrac{2-cos^2(x)}{sin(x)}=csc(x)+sin(x) \\\\\\ \cfrac{2-[1-sin^2(x)]}{sin(x)}\implies \cfrac{2-1+sin^2(x)}{sin(x)}\implies \cfrac{1+sin^2(x)}{sin(x)} \\\\\\ \cfrac{1}{sin(x)}+\cfrac{sin^2(x)}{sin(x)}\implies csc(x)+sin(x)](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B2-cos%5E2%28x%29%7D%7Bsin%28x%29%7D%3Dcsc%28x%29%2Bsin%28x%29%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B2-%5B1-sin%5E2%28x%29%5D%7D%7Bsin%28x%29%7D%5Cimplies%20%5Ccfrac%7B2-1%2Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%5Cimplies%20%5Ccfrac%7B1%2Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B1%7D%7Bsin%28x%29%7D%2B%5Ccfrac%7Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%5Cimplies%20csc%28x%29%2Bsin%28x%29)
3)
here, we do the right-hand-side
Hi! Your answer is q = -9
Please see an explanation for a better and clear understanding to your problem.
Any questions about my answer and explanation can be asked through comments! :)
Step-by-step explanation:
Since we want to solve for q-term. That means we are going to isolate q-term.

We can add 4 and 9 together.

Because we want to know the value of q. That means we have to isolate q-term by subtracting both sides by 13.

We are reaching to the final step where we divide the whole equation by 3.

Finally, the solution for this equation is q = -9. But what if you are not certain or sure about the answer? Let's check it out!
To check the answer, simply substitute q = -9 in the equation.

Notice that the equation is true for q = -9. Hence, we can conclude that the solution for this equation is q = -9.
Hope this helps!