Answer:
The zeroes of the given function are -5 and 4.
Step-by-step explanation:
The given function is
![f(x)=x^2+x-20](https://tex.z-dn.net/?f=f%28x%29%3Dx%5E2%2Bx-20)
Equate the given function equal to 0, to find the zeroes of the given function.
![x^2+x-20=0](https://tex.z-dn.net/?f=x%5E2%2Bx-20%3D0)
Write the middle term as 5x-4x.
![x^2+5x-4x-20=0](https://tex.z-dn.net/?f=x%5E2%2B5x-4x-20%3D0)
![(x^2+5x)+(-4x-20)=0](https://tex.z-dn.net/?f=%28x%5E2%2B5x%29%2B%28-4x-20%29%3D0)
Taking out common factors from each parenthesis.
![x(x+5)-4(x+5)=0](https://tex.z-dn.net/?f=x%28x%2B5%29-4%28x%2B5%29%3D0)
![(x-4)(x+5)=0](https://tex.z-dn.net/?f=%28x-4%29%28x%2B5%29%3D0)
Using zero product property, we get
![x-4=0\Rightarrow x=4](https://tex.z-dn.net/?f=x-4%3D0%5CRightarrow%20x%3D4)
![x+5=0\Rightarrow x=-5](https://tex.z-dn.net/?f=x%2B5%3D0%5CRightarrow%20x%3D-5)
Therefore the zeroes of the given function are -5 and 4.