It'll be 152 Hz at the exact instant the bumblebee
is right at the tip of your nose, on his way past you.
Before he gets there, while he's coming at you,
he sounds like a frequency higher than 152 Hz.
After he passes by, and is going away from you,
he sounds like a frequency lower than 152 Hz.
To solve this problem we will apply the principle of conservation of energy and the definition of kinematic energy as half the product between mass and squared velocity. So,


Here,
m = Mass
V = Velocity
Replacing,


Therefore the final kinetic energy of the two car system is 72.6kJ
Solution:
initial sphere mvr = final sphere mvr + Iω
where I = mL²/3 = 2.3g * (2m)² / 3 = 3.07 kg·m²
0.25kg * (12.5 + 9.5)m/s * (4/5)2m = 3.07 kg·m² * ω
where: ω = 2.87 rad/s
So for the rod, initial E = KE = ½Iω² = ½ * 3.07kg·m² * (2.87rad/s)²
E = 12.64 J becomes PE = mgh, so
12.64 J = 2.3 kg * 9.8m/s² * h
h = 0.29 m
h = L(1 - cosΘ) → where here L is the distance to the CM
0.03m = 1m(1 - cosΘ) = 1m - 1m*cosΘ
Θ = arccos((1-0.29)/1) = 44.77 º
The fiducial points of the Celsius<span> and the </span>Fahrenheit<span> temperature </span>scales<span> are the boiling and freezing </span>points<span> of pure water at 1 atm of pressure.
In short, Your Answer would be Option D
Hope this helps!</span>
Answer:
muscular dystrophy and myasthenia gravis