Answer:
29.4 uN
Explanation:
The electric force between two charges can be calculated using Coulomb's Law. According to this law the force between two point charges is given as:

where k is a proportionality constant known as the Coulomb's law constant. Its value is
Nm²/C²
r = distance between charges = 70 cm = 0.7 m
q1 = q2 = 4nC =
C
The negative sign indicates that the charges are negative. In the formula we will only use the magnitude of the charges.
Using these values in the formula, we get:

Therefore, the magnitude of repulsive force between the given charges will be 29.4 uN
Answer: 43.01 m
Explanation:
Given that :
Time ball uses in the air = 5.93, time it takes to reach maximum height and return = time of flight(T) = 5.93 s
TIME of flight (T) = 2 * time taken(t)
Where g = a = acceleration due to gravity = 9.8m/s²
S = 0.5at²
S = maximum height
Tjme taken (t) = time of flight / 2 = 5.93/2 = 2.965 s
Hence,
S = 0.5at²
S = 2 × 0.5 × 9.8 × 2.965²
S = 43.0770025
S = 43.01 m
Answer:
B) t = 1.83 [s]
A) y = 16.51 [m]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 0
Vo = initial velocity = 18 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time [s]
Note: the negative sign in the above equation means that the acceleration of gravity is acting in the opposite direction to the motion.
A) The maximum height is reached when the final velocity of the ball is zero.
0 = 18 - (9.81*t)
9.81*t = 18
t = 18/9.81
t = 1.83 [s], we found the answer for B.
Now using the following equation.

where:
y = elevation [m]
Yo = initial elevation = 0
y = 18*(1.83) - 0.5*9.81*(1.83)²
y = 16.51 [m]
Answer:
Blood
Explanation:
All the mentioned option will yield the same DNA for the suspect but blood, besides the DNA also contain further information that can be matched to the victim like blood group, genotype, some antibodies present and even traces of substances and disease.
Answer:
Second order line appears at 43.33° Bragg angle.
Explanation:
When there is a scattering of x- rays from the crystal lattice and interference occurs, this is known as Bragg's law.
The Bragg's diffraction equation is :
.....(1)
Here n is order of constructive interference, λ is wavelength of x-ray beam, d is the inter spacing distance of lattice and θ is the Bragg's angle or scattering angle.
Given :
Wavelength, λ = 1.4 x 10⁻¹⁰ m
Bragg's angle, θ = 20°
Order of constructive interference, n =1
Substitute these value in equation (1).

d = 2.04 x 10⁻¹⁰ m
For second order constructive interference, let the Bragg's angle be θ₁.
Substitute 2 for n, 2.04 x 10⁻¹⁰ m for d and 1.4 x 10⁻¹⁰ m for λ in equation (1).


<em>θ₁ </em>= 43.33°