Vs - velocity on beginning
ve - velocity on ending. You've got:

So he needed 4 second.
Answer:
The magnitude of the average induced emf in the wire during this time is 9.533 V.
Explanation:
Given that,
Radius r= 0.63 m
Magnetic field B= 0.219 T
Time t= 0.0572 s
We need to calculate the average induce emf in the wire during this time
Using formula of induce emf



.....(I)
In reshaping of wire, circumstance must remain same.
We calculate the length when wire is in two loops



The length when wire is in one loop




We need to calculate the initial area

Put the value into the formula


The final area is



Put the value of initial area and final area in the equation (I)


Negative sign shows the direction of induced emf.
Hence, The magnitude of the average induced emf in the wire during this time is 9.533 V.
Answer:
The two value of the wavelength for the out of tune guitar is

Explanation:
From the question we are told that
The wavelength of the note is 
The difference in beat frequency is 
Generally the frequency of the note played by the guitar that is in tune is

Where
is the speed of sound with a constant value 


The difference in beat is mathematically represented as

Where
is the frequency of the sound from the out of tune guitar

substituting values


The wavelength for this frequency is



For the second value of the second frequency



The wavelength for this frequency is



Answer:
time of flight of a pulse, and these most often
involve triggering of the measuring oscilloscope
with the signal that generates the sound pulse and
timing the time delay of the pulse picked up by a
conveniently placed microphone45
. Loren Winters
has reported a method similar in principle to the
present one, but which uses a completely different
detection system6
.
Explanation:
Answer:
1) 5.52 cm , C) 5.5 cm
Explanation:
When a measurement is carried out, in addition to the value of the magnitude, the error or uncertainty of the measurement must occur, in a direct measurement with an instrument the uncertainty is equal to the appreciation of the instrument.
Uniform see the errors by the number of significant figures days, in this cases they are two decimals for which the appreciation of the instrument ± - 0.01
now we can analyze the measurements made
1) 5.52 cm. Validate. It is a valid measurement is within the uncertainty range
2) 6.63 cm. It does not validate. It is out of the error range
3) 5.5 cm Valid. It is within the given error range,
4) 5.93 cm Not Valid. It is out of the error range.