Solution
distance travelled by Chris
\Delta t=\frac{1}{3600}hr.
X_{c}= [(\frac{21+0}{2})+(\frac{33+21}{2})+(\frac{55+47}{2})+(\frac{63+55}{2})+(\frac{70+63}{2})+(\frac{76+70}{2})+(\frac{82+76}{2})+(\frac{87+82}{2})+(\frac{91+87}{2})]\times\frac{1}{3600}
=\frac{579.5}{3600}=0.161miles
Kelly,
\Delta t=\frac{1}{3600}hr.
X_{k}=[(\frac{24+0}{2})+(\frac{3+24}{2})+(\frac{55+39}{2})+(\frac{62+55}{2})+(\frac{71+62}{2})+(\frac{79+71}{2})+(\frac{85+79}{2})+(\frac{85+92}{2})+(\frac{99+92}{2})+(\frac{103+99}{2})]\times\frac{1}{3600}
=\frac{657.5}{3600}
\Delta X=X_{k}-X_{C}=0.021miles
Answer:
A short circuit is an electrical circuit that allows a current to travel along an unintended path. It has no or very low electrical impedances. The opposite of a short circuit
Explanation:
Answer:
The approximate terminal velocity of a sky diver before the parachute opens is 320 km/h.
Explanation:
- The terminal velocity is the maximum magnitude of velocity that is attained by the diver when he or she falls in the air.
- The terminal velocity of the person diving in air before opening parachute is 320 km/h that means the velocity when the person is experiencing free fall is 320 km/h.
- During terminal velocity, we can represent mathematical equation as;
Buoyancy force + drag force = Gravity
Answer:



Explanation:
= Uncertainty in position = 1.9 m
= Uncertainty in momentum
h = Planck's constant = 
m = Mass of object
From Heisenberg's uncertainty principle we know

The minimum uncertainty in the momentum of the object is 
Golf ball minimum uncertainty in the momentum of the object

Uncertainty in velocity is given by

The minimum uncertainty in the object's velocity is 
Electron


The minimum uncertainty in the object's velocity is
.