we can convert any decimal value to a fraction by simply <u>using in the denominator a power of 10 with as many zeros as there are decimals and lost the dot above</u>, this one has one decimal, so we'll use 1 zero, and lose the dot above.
![\bf 0.\underline{6}\implies \cfrac{06}{1\underline{0}}\implies \cfrac{~~\begin{matrix} 2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~\cdot 3}{~~\begin{matrix} 2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~\cdot 50}\implies \cfrac{3}{50}](https://tex.z-dn.net/?f=%5Cbf%200.%5Cunderline%7B6%7D%5Cimplies%20%5Ccfrac%7B06%7D%7B1%5Cunderline%7B0%7D%7D%5Cimplies%20%5Ccfrac%7B~~%5Cbegin%7Bmatrix%7D%202%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%5Ccdot%203%7D%7B~~%5Cbegin%7Bmatrix%7D%202%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%5Ccdot%2050%7D%5Cimplies%20%5Ccfrac%7B3%7D%7B50%7D)
We can see that the 12 in the equation is basically the "m" in the "general slope-intercept form."
Therefore, your answer is the slope of the equation is 12.
Try this option:
1. if 8*x²+b*x+3=8*x²+p*x+q*x+3, then ⇒ b=p+q.
2. p*q = max_value (b²/2), if p=q=0.5*b, and p*q→-oo, if p>0 and q<0 or p>0 q<0.
3. example:
given 8x²+10x+3, the student rewrites it as a) 8x²+5x+5x+3 (5*5=25-max value); b) 8x²+0.01x+9.99x+3 (9.99*0.01=0.0999→0); c) 8x²-20x+30x+3 (p*q=-600).
answer: (-oo;0.5b²)