Answer:
The length of the wire = 352.66 feet.
Explanation:
A copper refinery produces a copper ingot weighing 150 lb. If the copper is drawn into wire whose diameter is 9.50 mm, how many feet of copper can be obtained from the ingot? The density of copper is 8.94 g/cm3. (Assume that the wire is a cylinder whose volume is V = πr2h, where r is the radius and h is its height or length.)
Step 1: Convert lb to kg
150 lb = 68.0389 kg
Step 2: Calculate volume of copper
Volume = mass / density
Volume = 68038.9 grams / 8.94 g/cm³
Volume = 7610.6 cm³ Cu
Step 3: Calculate length of wire
The diameter of the wire is 9.50 mm, so the radius is half of that (4.75 mm), or 0.475 cm.
The total "volume" of the wire is πr²h = (π)*(0.475 cm)²(h) = 0.708h = 7610 cm^3
7610 = 0.708h
h = 10749 cm = length of wire
The length of the wire = 352.66 feet.
Answer:
46.761g/mol
Explanation:
Given parameters:
Element = Hilarium , Hi
Isotopes: Hi- 45, Hi-46 and Hi- 48
Natural abundance of Hi-45 = 18.3%
Hi-46 = 34.5%
Hi-48 = 47.2%
Unknown:
Atomic weight of naturally occurring Hilarium = ?
Solution:
Isotopes have been studied extensively by mass spectrometry. The method is used to determine the proportion/percentage/fraction by which each of the isotopes of an element occurs in nature. The proportion is called geonormal abundance. From this we can calculate the atomic weight of an element.
We can use the expression below to find this value:
Atomic weight = m₄₅α₄₅ + m₄₆α₄₆ + m₄₈α₄₈
m is the atomic mass of each isotope and α is the abundance
Atomic weight = (45 x
) + (46 x
) + (48 x
)
Atomic weight of Hi = 8.235 + 15.870 + 22.656 = 46.761g/mol
X-ray
Explanation:
X-rays are used medically by doctors to image the interior of the human body but can cause cell damage.
X-rays are energetic radiations that are classified as ionizing radiations.
They penetrate the skin and body tissues.
- X-rays were discovered by Wilhelm Conrad Röentgen In Germany in the year 1895.
- The rays have a wide range of application today.
- They are used in x-ray therapy to fight cancerous cells in the body.
Learn more:
X-ray brainly.com/question/6507143
#learnwithBrainly