When you assume that the gas is behaving ideally, the gas molecules are very far from each other that they do not have any intermolecular forces. If it behaves this way, you can assume the ideal gas equation:
PV = nRT, where
P is the pressure
V is the volume
n is the number of moles
R is a gas constant
T is the absolute temperature
When the process goes under constant pressure (and assuming same number of moles),
P/nR = T/V = constant, therefore,
T₁/V₁=T₂/V₂
If V₂ = V₁(1+0.8) = 1.8V₁, then,
T₂/T₁ = 1.8V₁/V₁
Cancelling V₁,
T₂/300=1.8
T₂ =540 K
If you do not assume ideal gas, you use the compressibility factor, z. The gas equation would now become
PV =znRT
However, we cannot solve this because we don't know the value of z₁ and z₂. There will be more unknowns than given so we won't be able to solve the problem. But definitely, the compressibility factor method is more accurate because it does not assume ideality.
Can u send a picture so I know wat ur talking about
For the answer to the question above , as a chlorine atom becomes a negative ion, the atom <span>gains an electron and its radius increases.
The answer is the first one among the given choices.
I hope my answer helped you.</span>
The wavelength of reflected light, think of the symbol of Pink Floyd when thinking about light and color
1.04gK*1molK/39.01g K= 0.0267 mol K
0.70gCr*1mol/52.0g Cr = <span>0.0135 mol Cr
0.86 gO* 1 mol/16.0 g O = 0.0538 mol O
</span>0.0267 mol K/0.0135 = 2 mol K
0.0135 mol Cr /0.0135= 1 mol Cr
0.0538 mol O/0.035= 4 mol Cr
K2CrO4