Answer:
406.140 KHz
Explanation:
Given data:
Rsig = 100 kΩ
Rin = 100kΩ
Cgs = 1 pF,
Cgd = 0.2 pF, and etc.
Determine the expected 3-dB cutoff frequency
first find the CM miller capacitance
CM = ( 1 + gm*ro || RL )( Cgd )
= ( 1 + 5*10^-3 * 25 || 20 ) ( 0.2 )
= ( 11.311 ) pF
now we apply open time constant method to determine the cutoff frequency
Th = 1 / Fh
hence : Fh = 1 / Th = 
=
= 406.140 KHz
Answer:replace insulation to help control...
Explanation:
Thats a insulation workers job
Answer:
The velocity of the fluid is 1.1012 m/s
Solution:
As per the question, for the fluid:
Diameter of the capillary tube, d = 1.0 mm = 
Reynolds No., R = 1000
Kinematic viscosity, 
Now, for the fluid velocity, we use the relation:

where
= velocity of fluid


True I think I’m not sure?