Answer:
a)temperature=69.1C
b)3054Kw
Explanation:
Hello!
To solve this problem follow the steps below, the complete procedure is in the attached image
1. draw a complete outline of the problem
2. to find the temperature at the turbine exit use termodinamic tables to find the saturation temperature at 30kPa
note=Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties such as pressure and temperature.
3. Using thermodynamic tables find the enthalpy and entropy at the turbine inlet, then find the ideal enthalpy using the entropy of state 1 and the outlet pressure = 30kPa
4. The efficiency of the turbine is defined as the ratio between the real power and the ideal power, with this we find the real enthalpy.
Note: Remember that for a turbine with a single input and output, the power is calculated as the product of the mass flow and the difference in enthalpies.
5. Find the real power of the turbine
Answer:
maximum speed for safe vehicle operation = 55mph
Explanation:
Given data :
radius ( R ) = 678 ft
old building located ( m )= 30 ft
super elevation = 0.06
<u>Determine the maximum speed for safe vehicle operation </u>
firstly calculate the stopping sight distance
m = R ( 1 - cos
) ---- ( 1 )
R = 678
m ( horizontal sightline ) = 30 ft
back to equation 1
30 = 678 ( 1 - cos (28.655 *s / 678 ) )
( 1 - cos (28.655 *s / 678 ) ) = 30 / 678 = 0.044
cos
= 1.044
hence ; 28.65 * s = 678 * 0.2956
s = 6.99 ≈ 7 ft
next we will calculate the design speed ( u ) using the formula below
S = 1.47 ut +
---- ( 2 )
t = reaction time, a = vehicle acceleration, G1 = grade percentage
assuming ; t = 2.5 sec , a = 11.2 ft/sec^2, G1 = 0
back to equation 2
6.99 = 1.47 * u * 2.5 + ![\frac{u^2}{30[(11.2/32.2)-0 ]}](https://tex.z-dn.net/?f=%5Cfrac%7Bu%5E2%7D%7B30%5B%2811.2%2F32.2%29-0%20%5D%7D)
3.675 u + 0.0958 u^2 - 6.99 = 0
u ( 3.675 + 0.0958 u ) = 6.99
Answer:
The answer is below
Explanation:
1) The synchronous speed of an induction motor is the speed of the magnetic field of the stator. It is given by:

2) The speed of the rotor is the motor speed. The slip is given by:

3) The frequency of the rotor is given as:

4) At standstill, the speed of the motor is 0, therefore the slip is 1.
The frequency of the rotor is given as:

Answer:
A motion sensor uses one or multiple technologies to detect movement in an area. When a sensor detects motion, it sends a signal to your security systems control panel, which connects to your monitoring panel system. This alerts you and the monitoring center to a potential threat in your home.
Hope It Helps You................
Answer:
15625 moles of methane is present in this gas deposit
Explanation:
As we know,
PV = nRT
P = Pressure = 230 psia = 1585.79 kPA
V = Volume = 980 cuft = 27750.5 Liters
n = number of moles
R = ideal gas constant = 8.315
T = Temperature = 150°F = 338.706 Kelvin
Substituting the given values, we get -
1585.79 kPA * 27750.5 Liters = n * 8.315 * 338.706 Kelvin
n = (1585.79*27750.5)/(8.315 * 338.706) = 15625