Answer:
how many people were asked though
Explanation:
Answer:
The elastic modulus of the steel is 139062.5 N/in^2
Explanation:
Elastic modulus = stress ÷ strain
Load = 89,000 N
Area of square cross section of the steel bar = (0.8 in)^2 = 0.64 in^2
Stress = load/area = 89,000/0.64 = 139.0625 N/in^2
Length of steel bar = 4 in
Extension = 4×10^-3 in
Strain = extension/length = 4×10^-3/4 = 1×10^-3
Elastic modulus = 139.0625 N/in^2 ÷ 1×10^-3 = 139062.5 N/in^2
Answer:


Explanation:
Considering the one dimensional and steady state:
From Heat Conduction equation considering the above assumption:
Eq (1)
Where:
k is thermal Conductivity
is uniform thermal generation


Putt in Eq (1):

Energy balance is given by:

Eq (2)

Putting x=L


From Eq (2)

The question is not complete. We are supposed to find the average value of v_o.
Answer:
v_o,avg = 0.441V
Explanation:
Let t1 and t2 be the start and stop times of the output waveforms. Thus, from the diagram i attached, using similar triangles, we have;
3/(T/4) = 0.7/t1
So, 12/T = 0.7/t1
So, t1 = 0.7T/12
t1 = 0.0583 T
Also, from symmetry of triangles,
t2 = T/2 - t1
So, t2 = T/2 - 0.0583 T
t2 = 0.4417T
Average of voltage output is;
v_o,avg = (1/T) x Area under small triangle
v_o,avg = (1/T) x (3 - 0.7) x (T/4 - t1)
v_o,avg = (1/T) x (2.3) x (T/4 - 0.0583 T)
v_o,avg = (1/T) x 2.3 x 0.1917T
T will cancel out to give;
v_o,avg = 0.441V