1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandr82 [10.1K]
3 years ago
8

Two rods, with masses MA and MB having a coefficient of restitution, e, move along a common line on a surface, figure 2. a) Find

the general expression for the velocities of the two rods after impact. b) If mA = 2 kg, m3 = 1 kg, Vo= 3 m/s, and e = 0.65, find the value of the initial velocity v4 of rod A for it to be at rest after the impact and the final velocity vB of rod B. c) Find the magnitude of the impulse for the condition in part b. (3 marks) d) Find the percent decrease in kinetic energy which corresponds to the impact in part b.​

Engineering
1 answer:
ahrayia [7]3 years ago
6 0

Answer:

A.) Find the answer in the explanation

B.) Ua = 7.33 m/s , Vb = 7.73 m/s

C.) Impulse = 17.6 Ns

D.) 49%

Explanation:

Let Ua = initial velocity of the rod A

Ub = initial velocity of the rod B

Va = final velocity of the rod A

Vb = final velocity of the rod B

Ma = mass of rod A

Mb = mass of rod B

Given that

Ma = 2kg

Mb = 1kg

Ub = 3 m/s

Va = 0

e = restitution coefficient = 0.65

The general expression for the velocities of the two rods after impact will be achieved by considering the conservation of linear momentum.

Please find the attached files for the solution

You might be interested in
Compute the number of kilo- grams of hydrogen that pass per hour through a 6-mm-thick sheet of palladium having an area of 0.25
nydimaria [60]

Answer:

The number of kilo- grams of hydrogen that pass per hour through this sheet of palladium is 4.1 * 10^{-3} \frac{kg}{h}

Explanation:

Given

x1 = 0 mm

x2 = 6 mm = 6 * 10^{-3} m

c1 = 2 kg/m^{3}

c2 = 0.4 kg/m^{3}

T = 600 °C

Area = 0.25 m^{2}

D = 1.7 * 10^{8} m^{2}/s

First equation

J = - D \frac{c1 - c2}{x1 - x2}

Second equation

J = \frac{M}{A*t}

To find the J (flux) use the First equation

J = - 1.7 * 10^{8} m^{2}/s * \frac{2 kg/m^{3}  - 0.4 kg/m^{3}}{0 - 6 * 10^{-3} } = 4.53 * 10^{-6} \frac{kg}{m^{2}s }

To find M use the Second equation

4.53 * 10^{-6} \frac{kg}{m^{2}s} = \frac{M}{0.25 m^{2} * 3600s/h}

M = 4.1 * 10^{-3} \frac{kg}{h}

4 0
2 years ago
8. What are used by the project architect to depict different building systems and to show how they correlate to one anothe
grigory [225]

Explanation:

????????????????????????????

6 0
2 years ago
A city emergency management agency and a construction company have formed a public-private partnership. The construction company
Goryan [66]

Answer:

B

Explanation:

4 0
2 years ago
-Electronic control modules can easily evaluate the voltage and current levels of circuits to which they are connected and deter
erma4kov [3.2K]

Answer:

multiplexing

Explanation:

3 0
2 years ago
Determine the angular acceleration of the uniform disk if (a) the rotational inertia of the disk is ignored and (b) the inertia
lukranit [14]

Answer:

α = 7.848 rad/s^2  ... Without disk inertia

α = 6.278 rad/s^2  .... With disk inertia

Explanation:

Given:-

- The mass of the disk, M = 5 kg

- The right hanging mass, mb = 4 kg

- The left hanging mass, ma = 6 kg

- The radius of the disk, r = 0.25 m

Find:-

Determine the angular acceleration of the uniform disk without and with considering the inertia of disk

Solution:-

- Assuming the inertia of the disk is negligible. The two masses ( A & B )  are hung over the disk in a pulley system. The disk is supported by a fixed support with hinge at the center of the disk.

- We will make a Free body diagram for each end of the rope/string ties to the masses A and B.

- The tension in the left and right string is considered to be ( T ).

- Apply newton's second law of motion for mass A and mass B.

                      ma*g - T = ma*a

                      T - mb*g = mb*a

Where,

* The tangential linear acceleration ( a ) with which the system of two masses assumed to be particles move with combined constant acceleration.

- g: The gravitational acceleration constant = 9.81 m/s^2

- Sum the two equations for both masses A and B:

                      g* ( ma - mb ) = ( ma + mb )*a

                      a =  g* ( ma - mb ) / ( ma + mb )

                      a = 9.81* ( 6 - 4 ) / ( 6 + 4 ) = 9.81 * ( 2 / 10 )

                      a = 1.962 m/s^2  

- The rope/string moves with linear acceleration of ( a ) which rotates the disk counter-clockwise in the direction of massive object A.

- The linear acceleration always acts tangent to the disk at a distance radius ( r ).

- For no slip conditions, the linear acceleration can be equated to tangential acceleration ( at ). The correlation between linear-rotational kinematics is given below :

                     a = at = 1.962 m/s^2

                     at = r*α      

Where,

           α: The angular acceleration of the object ( disk )

                    α = at / r

                    α = 1.962 / 0.25

                    α = 7.848 rad/s^2                                

- Take moments about the pivot O of the disk. Apply rotational dynamics conditions:

             

                Sum of moments ∑M = Iα

                 ( Ta - Tb )*r = Iα

- The moment about the pivots are due to masses A and B.

 

               Ta: The force in string due to mass A

               Tb: The force in string due to mass B

                I: The moment of inertia of disk = 0.5*M*r^2

                   ( ma*a - mb*a )*r = 0.5*M*r^2*α

                   α = ( ma*a - mb*a ) / ( 0.5*M*r )

                   α = ( 6*1.962 - 4*1.962 ) / ( 0.5*5*0.25 )

                   α = ( 3.924 ) / ( 0.625 )

                   α = 6.278 rad/s^2

6 0
3 years ago
Other questions:
  • Which one of the following statements about the Wright brothers is not true?
    6·1 answer
  • A long homogeneous resistance wire of radius ro = 5 mm is being used to heat the air in a room by the passage of electric curren
    15·1 answer
  • If a barrel of oil weighs 1.5 kN, calculate the specific weight, density, and specific gravity of the oil. The barrel weighs 110
    7·1 answer
  • On a given day, a barometer at the base of the Washington Monument reads 29.97 in. of mercury. What would the barometer reading
    6·1 answer
  • 7. A single-pole GFCI breaker is rated at
    9·1 answer
  • Tech A says that some relays are equipped with a suppression diode in parallel with the winding. Tech B says that some relays ar
    10·1 answer
  • Cual es el costo del kwh
    8·1 answer
  • Please help me with this. Picture
    5·1 answer
  • Where would outdoor Air quality monitors need to be placed to properly record data?
    15·1 answer
  • Compare and contrast mechanical properties of plastics, metals and ceramics.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!