1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
romanna [79]
2 years ago
8

Another word for transformations in science

Physics
1 answer:
Gnesinka [82]2 years ago
7 0

Change, Alteration, Variation, Remaking etc...

You might be interested in
Officials begin to release water from a full man-made lake at a rate that would empty the lake in 4 weeks, but a river that can
iris [78.8K]

Answer:

5 weeks and 5 days is required to empty the lake

Explanation:

Officials begin the remove water from a full man made lake

The lake can be emptied in 4 weeks

= -1/4

A river can fill the lake up in 15 weeks

= 1/15

Let t represent the number of weeks that is required to empty the lake

= -1/t

Therefore the number of weeks it takes to empty the lake can be calculated as follows

-1/t= -1/4 + 1/15

-1/t= -11/60

Cross multiply

-11×t= -1×60

-11t= -60

t = 60/11

t= 5 5/11

Hence it takes 5 weeks and 5 days to empty the lake

6 0
3 years ago
What is the independent, and dependent variable? what should songs bobs conclusion be?
Fudgin [204]
The dependent variable is the slime on Gary's shell, because it's depending on other factors (independent factors).
6 0
2 years ago
HELP ASAP!! WILL TRY TO GIVE BRAINLIEST
VikaD [51]

Answer:

Facilitated diffusion and active transport both utilize proteins to transport substances across membranes. Differences between active transport and facilitated diffusion 1. Active transport requires an input of energy, usually ATP, while facilitated transport does not.

5 0
2 years ago
A 54 kg person stands on a uniform 20 kg, 4.1 m long ladder resting against a frictionless wall.
SVETLANKA909090 [29]

A) Force of the wall on the ladder: 186.3 N

B) Normal force of the ground on the ladder: 725.2 N

C) Minimum value of the coefficient of friction: 0.257

D) Minimum absolute value of the coefficient of friction: 0.332

Explanation:

a)

The free-body diagram of the problem is in attachment (please rotate the picture 90 degrees clockwise). We have the following forces:

W=mg: weight of the ladder, with m = 20 kg (mass) and g=9.8 m/s^2 (acceleration of gravity)

W_M=Mg: weight of the person, with M = 54 kg (mass)

N_1: normal reaction exerted by the wall on the ladder

N_2: normal reaction exerted by the floor on the ladder

F_f = \mu N_2: force of friction between the floor and the ladder, with \mu (coefficient of friction)

Also we have:

L = 4.1 m (length of the ladder)

d = 3.0 m (distance of the man from point A)

Taking the equilibrium of moments about point A:

W\frac{L}{2}sin 21^{\circ}+W_M dsin 21^{\circ} = N_1 Lsin 69^{\circ}

where

Wsin 21^{\circ} is the component of the weight of the ladder perpendicular to the ladder

W_M sin 21^{\circ} is the component of the weight of the man perpendicular to the ladder

N_1 sin 69^{\circ} is the component of the normal  force perpendicular to the ladder

And solving for N_1, we find the force exerted by the wall on the ladder:

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{mg}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+Mg\frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{(20)(9.8)}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+(54)(9.8)\frac{3.0}{4.1}\frac{sin 21^{\circ}}{sin 69^{\circ}}=186.3 N

B)

Here we want to find the magnitude of the normal force of the ground on the ladder, therefore the magnitude of N_2.

We can do it by writing the equation of equilibrium of the forces along the vertical direction: in fact, since the ladder is in equilibrium the sum of all the forces acting in the vertical direction must be zero.

Therefore, we have:

\sum F_y = 0\\N_2 - W - W_M =0

And substituting and solving for N2, we find:

N_2 = W+W_M = mg+Mg=(20)(9.8)+(54)(9.8)=725.2 N

C)

Here we have to find the minimum value of the coefficient of friction so that the ladder does not slip.

The ladder does not slip if there is equilibrium in the horizontal direction also: that means, if the sum of the forces acting in the horizontal direction is zero.

Therefore, we can write:

\sum F_x = 0\\F_f - N_1 = 0

And re-writing the equation,

\mu N_2 -N_1 = 0\\\mu = \frac{N_1}{N_2}=\frac{186.3}{725.2}=0.257

So, the minimum value of the coefficient of friction is 0.257.

D)

Here we want to find the minimum coefficient of friction so the ladder does not slip for any location of the person on the ladder.

From part C), we saw that the coefficient of friction can be written as

\mu = \frac{N_1}{N_2}

This ratio is maximum when N1 is maximum. From part A), we see that the expression for N1 was

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}

We see that this quantity is maximum when d is maximum, so when

d = L

Which corresponds to the case in which the man stands at point B, causing the maximum torque about point A. In this case, the value of N1 is:

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{L}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{sin 21^{\circ}}{sin 69^{\circ}}(\frac{W}{2}+W_M)

And substituting, we get

N_1=\frac{sin 21^{\circ}}{sin 69^{\circ}}(\frac{(20)(9.8)}{2}+(54)(9.8))=240.8 N

And therefore, the minimum coefficient of friction in order for the ladder not to slip is

\mu=\frac{N_1}{N_2}=\frac{240.8}{725.2}=0.332

Learn more about torques and equilibrium:

brainly.com/question/5352966

#LearnwithBrainly

7 0
3 years ago
The diagram below shows a food web.
Mekhanik [1.2K]
i think it’s B. sorry if i’m wrong
8 0
2 years ago
Read 2 more answers
Other questions:
  • The German V-2 rocket was the first man made object in space
    13·1 answer
  • A balloon starts rising from rest from the ground with an acceleration of 1.25 m/s2. After 8s, a stone is released from the ball
    10·1 answer
  • How is Uranus colder than Neptune
    8·1 answer
  • Suppose your vehicle is moving 12m/s as it crosses the 7m line. It took 6 seconds to get to the 7m line. What was its accelerati
    11·1 answer
  • Physical Science - 02.05 - Question #3
    12·1 answer
  • If you remove large amounts of heat from a liquid, what could happen
    13·1 answer
  • Our ancestors are our guides?​
    5·1 answer
  • In a line graph the dependent variable is plotted on the
    6·1 answer
  • Aball is thrown horizontaly from the top of a building with an initial velocity of 15 meters per second. At the same instant, a
    7·1 answer
  • During an isothermal process, 10 j of heat is removed from an ideal gas. What is the work done by the gas in the process?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!