The diameter of the wire is 2.8 * 10^-3 m.
<h3>What is the length?</h3>
Mass of the wire = 1.0 g or 1 * 10^-3 Kg
Resistance = 0.5 ohm
Resistivity of copper = 1.7 * 10^-8 ohm meter
Density of copper = 8.92 * 10^3 Kg/m^3
V = m/d
But v = Al
Al = m/d
A = m/ld
Resistance = ρl/A
= ρl/m/ld =
l^2 = Rm/ρd
l = √ Rm/ρd
l = √0.5 * 1 * 10^-3 / 1.7 * 10^-8 * 8.92 * 10^3
l = 1.82 m
A = πr^2
Also;
A = m/ld
A = 1 * 10^-3 Kg / 1.82 m * 8.92 * 10^3 Kg/m^3
A = 6.2 * 10^-5 m^2
r^2 = A/ π
r = √A/ π
r = √6.2 * 10^-5 m^2/3.142
r = 1.4 * 10^-3 m
Diameter = 2r = 2( 1.4 * 10^-3 m) = 2.8 * 10^-3 m
Learn more about resistivity:brainly.com/question/14547003
#SPJ4
Missing parts;
Suppose you wish to fabricate a uniform wire from 1.00g of copper. If the wire is to have a resistance of R=0.500Ω and all the copper is to be used, what must be (a) the length and (b) the diameter of this wire?
The answer to the question<u> What shape is the graph produced by a force vs acceleration graph</u> is A. Linear
Since Force, F = ma where m = mass and a = acceleration. For constant mass, F ∝ a. That is, F is directly proportional to acceleration, a.
Since this is a linear relationship, the graph of force vs acceleration will be linear.
The answer to the question<u> What shape is the graph produced by a force vs acceleration graph</u> is A. Linear
Learn more about graphs here:
brainly.com/question/24322515
The term saturated solution is used in chemistry to define a solution in which no more solute can be dissolved in the solvent. It is understood that saturation of the solution has been achieved when any additional substance that is added results in a solid precipitate or is let off as a gas.
Answer:
<em>10.90km</em>
Explanation:
Magnitude of the total displacement is expressed using the equation
d = √dx²+dy²
dx is the horizontal component of the displacement
dy is the vertical component of the displacement
dy = -6.7sin27°
dy = -6.7(0.4539)
dy = -3.042
For the horizontal component of the displacement
dx = -4.5 - 6.7cos27
dx = -4.5 -5.9697
dx = -10.4697
Get the magnitude of the bicyclist's total displacement
Recall that: d = √dx²+dy²
d = √(-3.042)²+(-10.4697)²
d = √9.2538+109.6146
d = √118.8684
<em>d = 10.90km</em>
<em>Hence the magnitude of the bicyclist's total displacement is 10.90km</em>
<em></em>
An area where the particles in a medium are spaced close together is called compression.