Answer:
113.53 g
Explanation:
Please see attached photo for explanation.
In the attached photo, M is the mass of the meter stick.
The value of M can be obtained as shown below:
Clockwise moment = M × 10.5
Anticlockwise moment = 65.5 × 18.2
Anticlockwise moment = Clockwise moment
65.5 × 18.2 = M × 10.5
1192.1 = M × 10.5
Divide both side by 10.5
M = 1192.1 / 10.5
M = 113.53 g
Thus, the mass of the meter stick is 113.53 g
the common attributes are positive and negatively charged
Required value of initial speed of the bullet be ( 4M/m)√(gL).
Given parameters:
Mass of the bullet =m.
Mass of the bob of the pendulum = M.
speed of the bullet before collision = v
Speed of the bullet after collision = v/2.
Length of the pendulum stiff rod = L.
Let speed transmitted to the pendulum be u.
Using principle of conservation of momentum:
mv = Mu + mv/2
⇒ Mu = mv/2
⇒ u = (m/M)v/2
We know that: to make the bob over the top of the trajectory without falling backward in its circular path, required speed be = √(4gL). [ where g = acceleration due to gravity]
To be minimum initial speed the bullet must have in order for the pendulum bob to just barely swing through a complete vertical circle:
u = √(4gL)
⇒ (m/M)v/2 = √(4gL)
⇒ v =( 4M/m)√(gL).
Hence, minimum required speed of the bullet be ( 4M/m)√(gL).
Learn more about speed here:
brainly.com/question/28224010
#SPJ1
The answer to your question is Metal
Answer:
12m/s
Explanation:

Let's call the velocity that the car maintains for 10 seconds
, and the final velocity
.

Hope this helps!