Answer:
answer is 0.1428
Explanation:
Data:- vf=5.0 , vi=0.0 , t=35 , a=? so appling first eq of motion vf=vi+at we have to find a=vf-vi/t , a=5.0-0.0/35 , a=5/35 ,a=0.1428m/sec²
Answer:
the potential energy of this body is 245 J.
Explanation:
Given;
mass of the body, m = 250 g = 0.25 kg
height from which the body was dropped, h = 100 m
acceleration due to gravity, g = 9.8 m/s²
The potential energy of this body is calculated as;
P.E = mgh
substitute the given values and solve for the potential energy of this body;
P.E = 0.25 x 9.8 x 100
P.E = 245 J.
Therefore, the potential energy of this body is 245 J.
The temperature of 20°C is equal to 68.0<span>°F</span>
The continuous submarine mountain range which winds through all the oceans is called the mid-ocean <u>ridge.
</u>It is a form of a mountain which is found underwater, and it appeared there due to the movements of tectonic plates. It is responsible for the creation of new seafloor, meaning that the ground underwater changes constantly with the formation of these ridges. <u>
</u>
Answer:
Density of liquid = 4730 kg/m³
Atmospheric pressure on planet X = 8401.7 N/m²
Explanation:
Pressure, P = ρgh where ρ = density of liquid, g =9.8 m/s² and h = height of column at earth's surface = 2185 mm. Since P = atmospheric pressure, for mercury, P = ρ₁gh₁ where ρ₁ = 13.6 g/cm³ and h₁ = 760 mm
So, ρgh = ρ₁gh₁
ρ = ρ₁h₁/h = 13.6 g/cm³ × 760/2185 = 4.73 g/cm³ = 4730 kg/m³
The atmospheric pressure on planet X
P = ρg₁h₃ g₁ = g/4 and h₃ = 725 mm = 0.725 m
on planet X
P = ρg₁h₃ = (4730 kg/m³ × 9.8 m/s² × 0.725 m)/4 = 8401.7 N/m²