Answer:
Explanation:
Since energy is conserved:
2
mu
2
=
2
mv
2
+mgh
⇒u
2
=v
2
+2gh
⇒(3)
2
=v
2
+2(9.8)(0.5−0.5cos60)
⇒v=2m/s
Answer:
In combination, the equatorial bulge and the effects of the surface centrifugal force due to rotation mean that sea-level gravity increases from about 9.780 m/s2 at the Equator to about 9.832 m/s2 at the poles, so an object will weigh approximately 0.5% more at the poles than at the Equator.
Energy can be one answer! There are many, but energy is a main one.
<u>Answer:</u>
<em>The correct equation for measuring the average microscopic weight for 3 isotopes is multiply the rate of abundance by each weight and add them.</em>
<u>Explanation:</u>
To calculate the average microscopic mass of element using weights and relative abundance we have to follow the following steps.
- Take the correct weight of each isotope (that will be in decimal form)
- Multiply the weight of each isotope by its abundance
- Add each of the results together.
<em>This gives the required average microscopic weight of the three isotopes.</em>