1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shusha [124]
3 years ago
6

What is the meaning of s in heat energy?​

Physics
1 answer:
ValentinkaMS [17]3 years ago
6 0

Answer:Specific heat is the amount of heat required to raise one gram of any substance one degree Celsius or Kelvin. The formula for specific heat is the amount of heat absorbed or released = mass x specific heat x change in temperature.

.

Explanation:

HOPE IT HELP

You might be interested in
An object starts at rest then accelerates at a rate of 5m/s^2 for 1 second and then 2m/s^2 for 2 seconds. What is the average ac
inn [45]

Acceleration = (change in speed) / (time for the change)

-- during the first second, the object increases its speed to

(5 m/s²) · (1 s) = 5 m/s .

-- During the next 2 seconds, the object increases its speed by

(2 m/s²) · ( s) = 4 m/s

So at the end of the whole 3 seconds, its speed is (5 m/s) + (4 m/s) = 9 m/s

-- Over the whole time, its speed has changed from zero to 9 m/s.

Acceleration = (change in speed) / (time for the change)

Acceleration = (9 m/s) / (3 sec)

<em>Acceleration = 3 m/s²</em>

7 0
3 years ago
Father drove 176 km in 7 hours. For the first 92 km, he spent
Verizon [17]

Answer:

28km/h

Explanation:

92km = 4 hours

176 - 92 = 84

84km = 3 hours

84/3 = 28

28km/h

Hopefully this helps you :)

pls mark brainlest ;)

3 0
3 years ago
To practice Problem-Solving Strategy 23.2 for continuous charge distribution problems. A straight wire of length L has a positiv
Lesechka [4]

Answer:

             E = k Q / [d(d+L)]

Explanation:

As the charge distribution is continuous we must use integrals to solve the problem, using the equation of the elective field

       E = k ∫ dq/ r² r^

"k" is the Coulomb constant 8.9875 10 9 N / m2 C2, "r" is the distance from the load to the calculation point, "dq" is the charge element  and "r^" is a unit ventor from the load element to the point.

Suppose the rod is along the x-axis, let's look for the charge density per unit length, which is constant

         λ = Q / L

If we derive from the length we have

        λ = dq/dx       ⇒    dq = L dx

We have the variation of the cgarge per unit length, now let's calculate the magnitude of the electric field produced by this small segment of charge

        dE = k dq / x²2

        dE = k λ dx / x²

Let us write the integral limits, the lower is the distance from the point to the nearest end of the rod "d" and the upper is this value plus the length of the rod "del" since with these limits we have all the chosen charge consider

        E = k \int\limits^{d+L}_d {\lambda/x^{2}} \, dx

We take out the constant magnitudes and perform the integral

        E = k λ (-1/x){(-1/x)}^{d+L} _{d}

   

Evaluating

        E = k λ [ 1/d  - 1/ (d+L)]

Using   λ = Q/L

        E = k Q/L [ 1/d  - 1/ (d+L)]

 

let's use a bit of arithmetic to simplify the expression

     [ 1/d  - 1/ (d+L)]   = L /[d(d+L)]

The final result is

     E = k Q / [d(d+L)]

3 0
3 years ago
A wire 6.60 m long with diameter of 2.05 mm has a resistance of 0.0310 Ω.
Alex73 [517]

Answer:

1.551×10^-8 Ωm

Explanation:

Resistivity of a material is expressed as shown;.

Resistivity = RA/l

R is the resistance of the material

A is the cross sectional area

l is the length of the wire.

Given;

R = 0.0310 Ω

A = πd²/4

A = π(2.05×10^-3)²/4

A = 0.000013204255/4

A = 0.00000330106375

A = 3.30×10^-6m

l = 6.60m

Substituting this values into the formula for calculating resistivity.

rho = 0.0310× 3.30×10^-6/6.60

rho = 1.023×10^-7/6.60

rho = 1.551×10^-8 Ωm

Hence the resistivity of the material is 1.551×10^-8 Ωm

6 0
3 years ago
Consider the two moving boxcars in Example 5. Car 1 has a mass of m1 = 65000 kg and a velocity of v01 = +0.80 m/s. Car 2 has a m
Amiraneli [1.4K]

Answer:

1.034m/s

Explanation:

We define the two moments to develop the problem. The first before the collision will be determined by the center of velocity mass, while the second by the momentum preservation. Our values are given by,

m_1 = 65000kg\\v_1 = 0.8m/s\\m_2 = 92000kg\\v_2 = 1.2m/s

<em>Part A)</em> We apply the center of mass for velocity in this case, the equation is given by,

V_{cm} = \frac{m_1v_1+m_2v_2}{m_1+m_2}

Substituting,

V_{cm} = \frac{(65000*0.8)+(92000*1.2)}{92000+65000}

V_{cm} = 1.034m/s

Part B)

For the Part B we need to apply conserving momentum equation, this formula is given by,

m_1v_1+m_2v_2 = (m_1+m_2)v_f

Where here v_f is the velocity after the collision.

v_f = \frac{m_1v_1+m_2v_2}{m_1+m_2}

v_f = \frac{(65000*0.8)+(92000*1.2)}{92000+65000}

v_f = 1.034m/s

8 0
4 years ago
Other questions:
  • Two football players with mass 75kg and 100kg run directly toward each other with speeds of 6 m/s and 8 m/s respectively, If the
    13·1 answer
  • Which of the following does NOT influence one's body composition? A. metabolism B. financial problems C. childhood obesity D. me
    5·2 answers
  • This is a model of a Neon atom. How likely is it that this atom would want to bond with another atom? Neon atom Question 5 optio
    7·1 answer
  • A security guard walks at a steady pace, traveling 190 m in one trip around the perimeter of a building. It takes him 260 s to m
    7·1 answer
  • A crate is dragged 4.0 m along a rough floor with a constant velocity by a worker applying a force of 400 N to a rope at an angl
    7·1 answer
  • Two parallel circular rings of radius R have their centres in the X axis separated by a distance L. If each ring carries a unifo
    15·1 answer
  • What important example, shown in the picture, is given regarding a real-life
    5·1 answer
  • Four model rockets are launched in a field. The mass of each rocket and the net force acting on it when it launches are given in
    5·1 answer
  • 2. A car is sitting at the top of a hill that is 14 m high. The car has a mass of 53 kg. The car has
    7·1 answer
  • A car of mass 5000 kg was initially moving at 100 km/h and stops at a distance of 55 m. Find the
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!