The formula for the period of wave is: wave period is equals to 1 over the frequency.

To get the value of period of wave you need to divide 1 by 200 Hz. However, beforehand, you have to convert 200 Hz to cycles per second. So that would be, 200 cyles per second or 200/s.
By then, you can start the computation by dividing 1 by 200/s. Since 200/s is in fractional form, you have to find its reciprocal form and multiply it to one which would give you 1 (one) second over 200. This would then lead us to the value
0.005 seconds as the wave period.
wave period= 1/200 Hz
Convert Hz to cycles per second first
200 Hz x 1/s= 200/second
Make 200/second as your divisor, so:
wave period= 1/ 200/s
get the reciprocal form of 200/s which is s/200
then you can start the actual computation:
wave period= 1 x s divided by 200
this would give us an answer of
0.005 s.
My guess would be because the gravity from the Earth's core is constantly pulling the ball towards the ground. It's like the moon. Why doesn't the moon just float away in space? Because Earth's gravitational pull keeps it rotating around it. Therefore, the ball will always be pulled towards the core which keeps it from from rolling forever due to friction. But i may be wrong, even though this a quite a good answer, hope it is right!
Answer:
If you are simply looking for the X component then the most applicable formula from the choices given is Tx + Ux+ Vx. This means that you will add all x-components. For example: If a man walking along the x-axis walks 10 meters to the right, 5 back and 2 meters forward, what is the resultant vector?
Answer:

Explanation:
sin^2 60° = ( \|3 / 2 ) ^2 = 3 / 4.
The voltage in the resistor is 63 V
Explanation:
We can solve the problem by applying Ohm's law, which states the relationship between voltage, current and resistance in a resistor:

where
V is the voltage
R is the resistance
I is the current
For the resistor in this problem, we have:
I = 0.42 A is the current
is the resistance
Substituting into the equation, we find the voltage needed:

Learn more about voltage and current:
brainly.com/question/4438943
brainly.com/question/10597501
brainly.com/question/12246020
#LearnwithBrainly