Answer:
Fnet - Fg
Explanation:
When an object is in an elevator, its weight varies with respect to the direction of movement of the elevator and the elevators acceleration.
The weight, W, of an object can be expressed as;
W = mg
where m is the object's mass, and g is the acceleration due gravity.
If the object is in an elevator that speed up, an apparent weight would be felt since both mass and elevator are moving against gravitational pull of the earth.
So that,
= mg + ma
where: mg is the weight of the object, and ma is the apparent weight.
Apparent weight (ma) =
- mg
Answer:
33.83W/m²
Explanation:
The intensity of the speake at the surface is
I = P/A
I = 2.03W / 0.06m²
I = 33.83W/m²
Answer:
My answer is 7.2 km
Explanation:
When Stephen goes to the south and then to the east, he is drawing a right triangle, where the 4 km and 6 km sides are the cathetus of a right triangle.
Then we use the Pithagorean theorem to solve this problem. We need to find the hypotenuse.
c² = a² + b²
c² = 4² + 6²
c² = 16 + 36
c² = 52
c = 7.2 km
Answer:
c. V = 2 m/s
Explanation:
Using the conservation of energy:

so:
Mgh = 
where M is the mass, g the gravity, h the altitude, I the moment of inertia of the pulley, W the angular velocity of the pulley and V the velocity of the mass.
Also we know that:
V = WR
Where R is the radius of the disk, so:
W = V/R
Also, the moment of inertia of the disk is equal to:
I = 
I = 
I = 10 kg*m^2
so, we can write the initial equation as:
Mgh = 
Replacing the data:
(5kg)(9.8)(0.3m) = 
solving for V:
(5kg)(9.8)(0.3m) = 
V = 2 m/s