<span>The specific heat (or the amount of heat required to raise the temperature of a unit mass of a substance by 1 degree Celsius) of copper is about 0.386 J/g/degree Celsius. This means that if we supply 0.386 J of energy to 1 gram of copper, its temperature will increase by 1 degree Celsius.</span>
Explanation:
Given:
Solving for
:

where:

Integrating to get
with initial conditions
:

Integrating to get x with initial conditions x(0) = 0:

When t=T:


Answer:
Efficiency = 90 %
Wasted energy = 10 %
Explanation:
Since we have the input energy and useful output energy of the electric kettle, the only thing we are required to calculate here is its efficiency. This is gotten from
E = useful output energy/input energy × 100
E = 9/10 × 100 = 90 %
The percentage of wasted energy is
W = wasted energy/input energy × 100
W = 1/10 × 100
W = 10 %
Power can be defined as the rate at which work is accomplished.
Option D is the correct answer.
<h3>
</h3><h3>
Power </h3>
The work done by an object in a given time interval is called the power of that object.
Suppose an external force F is applied to any object for the time interval T seconds. Due to this external force, the object will perform some amount of work for the time T seconds. This work W done by the object for the time interval T seconds is called the power of that object.
Power can be defined in mathematical term which is given below.

Thus the power can also be defined as the work done by the object per unit time interval.
Hence we can conclude that option D is the correct answer.
To know more about power, follow the link given below.
brainly.com/question/1618040.
Don't text while driving
don't get your eyes off the road
don't get distracted