Force is the change in momentum over a specific time. The change of momentum is therefore the force multiplied by the time that the force acts, so 3000x4.0=12000 N s=12000 kg m/s
Answer: c
Explanation:
C Air is a compound of two or more components that keep their own identifying properties, while water is composed of mixtures that combine to form a compound.
Answer:

Explanation:
<u>Frictional Force
</u>
When the car is moving along the curve, it receives a force that tries to take it from the road. It's called centripetal force and the formula to compute it is:

The centripetal acceleration a_c is computed as

Where v is the tangent speed of the car and r is the radius of curvature. Replacing the formula into the first one

For the car to keep on the track, the friction must have the exact same value of the centripetal force and balance the forces. The friction force is computed as

The normal force N is equal to the weight of the car, thus

Equating both forces

Simplifying

Substituting the values


Answer:
Angle with the +x axis is θ = 79.599degree
Then the velocity of owner = 1.235m/s
Explanation:
Given that the mass of dog is m1 =26.2 kg
velocity of dog is u1 = 3.02 m/s (north)
mass of cat is m2 = 5.3 kg
velocity is u2 = 2.74 m/s (east )
Mass of owner is M = 65.1 kg
Consider the east direction along +x axis andnorth along +y
momentum of dog is Py = m1 x u1
= 79.124 kg.m/s (j)
momentum of cat is Px = m2 x u2
= 14.522 kg.m/s (i)
Then the net magnitude of momentum is P = (Px2 + Py2)1/2
= 80.445
Angle with the +x axis is θ =tan-1(Py / Px ) = 79.599 degree
Then the velocity of owner is v = P / M = 1.235 m/s
A = delta v over delta t delta v is calculated with final velocity less initial velocity then delta v is equals to 20 - 0 that is 20m/s and to calculate delta t is like delta v is final time less initial time as initial time always is 0 the delta t is equals to 10s then a = 20/10 then acceleration is 10m/s^2 (remember that is squared)