Soy sauce is a homogeneous mixture.
Answer:
140 J
Explanation:
From the the question, the mass of the man =70.0 kg and the speed at which the man is walking =2.0 m/s.

where K.E = the kinetic energy, m=mass and v= speed.
By substitution,



Hence the kinetic energy of the man is 140J
<span>d
The mass is doubled which means that both the momentum and kinetic energy are also doubled. Also the normal force that's acting along with the coefficient of kinetic friction is also doubled. So the friction that's working to slow down the crate is doubled. So the crate will have double the kinetic energy that needs to be dissipated, but the rate of dissipation is also doubled, so the total time required to dissipate the kinetic energy is the same. And since both crates start out with the same velocity and since they'll lose energy (and velocity) at the same proportional rate, they'll take the same distance to slide to a stop.</span>
The resultant<span> is the vector sum of 2 or more vectors. It is the conclusion of adding 2 or more vectors together. If </span>displacement <span>vectors A, B, and C are added together, the result will be vector R.</span>
Answer:
The required angular speed the neutron star is 10992.32 rad/s
Explanation:
Given the data in the question;
mass of the sun M
= 1.99 × 10³⁰ kg
Mass of the neutron star
M
= 2( M
)
M
= 2( 1.99 × 10³⁰ kg )
M
= ( 3.98 × 10³⁰ kg )
Radius of neutron star R
= 13.0 km = 13 × 10³ m
Now, let mass of a small object on the neutron star be m
angular speed be ω
.
During rotational motion, the gravitational force on the object supplies the necessary centripetal force.
GmM
= / R
² = mR
ω
²
ω
² = GM
= / R
³
ω
= √(GM
= / R
³)
we know that gravitational G = 6.67 × 10⁻¹¹ Nm²/kg²
we substitute
ω
= √( ( 6.67 × 10⁻¹¹ )( 3.98 × 10³⁰ ) ) / (13 × 10³ )³)
ω
= √( 2.65466 × 10²⁰ / 2.197 × 10¹²
ω
= √ 120831133.3636777
ω
= 10992.32 rad/s
Therefore, The required angular speed the neutron star is 10992.32 rad/s