Answer:
Step-by-step explanation:
1: 7/6
2: 3/2
3: 0.000288
4: six tenths
Using the binomial distribution, it is found that there is a 0.7215 = 72.15% probability that between 10 and 15, inclusive, accidents involved drivers who were intoxicated.
For each fatality, there are only two possible outcomes, either it involved an intoxicated driver, or it did not. The probability of a fatality involving an intoxicated driver is independent of any other fatality, which means that the binomial distribution is used to solve this question.
Binomial probability distribution
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- 70% of fatalities involve an intoxicated driver, hence
.
- A sample of 15 fatalities is taken, hence
.
The probability is:

Hence







Then:

0.7215 = 72.15% probability that between 10 and 15, inclusive, accidents involved drivers who were intoxicated.
A similar problem is given at brainly.com/question/24863377
Answer:
For each of the possible outcomes add the numbers on the two dice and count how many times this sum is 7. If you do so you will find that the sum is 7 for 6 of the possible outcomes. Thus the sum is a 7 in 6 of the 36 outcomes and hence the probability of rolling a 7 is 6/36 = 1/6
I think its the second one but just a fyi the site your on is ready and it looks like your doing the major test, not every answer on it are you suppose to get right its a test to see what you know and what you need to know