Answer:
2
Explanation:
There are some basic laws that guide the combination of elements chemically. These are the law of conservation of mass, law of definite proportion, law of multiple proportion and the law of reciprocal proportion.
For this question, the useful law to use is the law of definite proportion. Here, it is stated that no matter the method of preparation or source of preparation, the elements of a chemical compound are always present in a fixed ratio.
What this means that at any point in time, the compound titanium dioxide contains one atom of titanium and two atoms of oxygen. This means that both atoms are present at all times in a proportion of 1 to 2 .
Among the choices given, the correct answer is the first option. Substance X most likely is a crystal, and substance Y most likely is a liquid. Substance X having a fixed volume describes a crystal because crystals occupy a certain volume. Substance Y is a liquid because liquids can still be compressed further in order to attain a more packed <span>structure.</span>
Answer:
Dude im not 100% sure but I think its b and c im sorry if im wrong its just that im not really sure which ones are.
Explanation:
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm
Answer:
i think the answer is A....
Explanation:
Igneous rocks (from the Latin word for fire) form when hot, molten rock crystallizes and solidifies. The melt originates deep within the Earth near active plate boundaries or hot spots, then rises toward the surface.