Answer:
both kinds of tickets are $5 each
Step-by-step explanation:
Let s and c represent the dollar costs of a senior ticket and child ticket, respectively. The problem statement describes two relationships:
12s + 5c = 85 . . . . . revenue from the first day of sales
6s + 9c = 75 . . . . . . revenue from the second day of sales
Double the second equation and subtract the first to eliminate the s variable.
2(6s +9c) -(12s +5c) = 2(75) -(85)
13c = 65 . . . . . simplify
65/13 = c = 5 . . . . . divide by the coefficient of c
Substitute this value into either equation. Let's use the second one.
6s + 9·5 = 75
6s = 30 . . . . . . . subtract 45
30/6 = s = 5 . . . divide by the coefficient of s
The price of a senior ticket is $5; the price of a child ticket is $5.
We need to use Law of sine.
sin A/a = sin C/c
sin A/|CB| = sin C/|AB|
sin A/14 = sin(118⁰)/ 20
sin A = (14*sin(118⁰))/ 20
A=arcsin((14*sin(118⁰))/ 20) ≈ 38⁰
Answer:
I have attached the work to your problem.
Please see the attachment below.
I hope this helps!
216 as when 2 there is 6x6 but when there’s 3 it’s 6x6x6 which is 216