We have the following points and their coordinates:

We must compute the distance ST between them.
The distance ST between the two points is given by:
![ST=\sqrt[]{(x_S-x_T)^2+(y_S-y_T)^2_{}},](https://tex.z-dn.net/?f=ST%3D%5Csqrt%5B%5D%7B%28x_S-x_T%29%5E2%2B%28y_S-y_T%29%5E2_%7B%7D%7D%2C)
where (xS,yS) are the coordinates of the point S and (xT,yT) are the coordinates of the point T.
Replacing the coordinates of the points in the formula above, we find that:
![\begin{gathered} ST=\sqrt[]{(-3_{}-(-2)_{})^2+(10_{}-3_{})^2_{}}, \\ ST=\sqrt[]{1^2+7^2}, \\ ST=\sqrt[]{50}\text{.} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20ST%3D%5Csqrt%5B%5D%7B%28-3_%7B%7D-%28-2%29_%7B%7D%29%5E2%2B%2810_%7B%7D-3_%7B%7D%29%5E2_%7B%7D%7D%2C%20%5C%5C%20ST%3D%5Csqrt%5B%5D%7B1%5E2%2B7%5E2%7D%2C%20%5C%5C%20ST%3D%5Csqrt%5B%5D%7B50%7D%5Ctext%7B.%7D%20%5Cend%7Bgathered%7D)
Answer: ST = √50
Answer:
30 square inches
Step-by-step explanation:
The complete question in the attached figure
we know that
the diagonals of a rhombus intersect to form right angles,
so
angle ACE is ----------> (90°-64°)-----------> 26°
ACE is the angle bisector of ACD, this means that ACD is ---------> 26 x 2 = 52°
The diagonals are angle bisectors to the opposite corners
so
ACD = ACB = 52°
and
BCD = 52 x 2 = 104°
For a rhombus, opposite angles are equivalent,
so
BAD = BCD = 104°
the answer is
angle BAD=104°
Take away 1,3 it interferes with 1,1 making it not a function. You can use the vertical line test and see if more than one is in a vertical line to find it.