<h3>
Answer:</h3>
y = (x +2)(x -1)(x -3) . . . . or . . . . y = x³ -2x² -5x +6
<h3>
Step-by-step explanation:</h3>
The graph shows y=0 at x=-2, x=1, and x=3. These are called the "zeros" or "roots" of the function, because the value of the function is zero there.
When "a" is a zero of a polynomial function, (x -a) is a factor. This means the factors of the graphed function are (x -(-2)), (x -1) and (x -3). The function can be written as the product of these factors:
... y = (x +2)(x -1)(x -3) . . . . . the equation represented by the graph
Or, the product can be multiplied out
... y = (x +2)(x² -4x +3)
... y = x³ -2x² -5x +6 . . . . . the equation represented by the graph
The answer is shown above
Answer:
A
Step-by-step explanation:
The domain of a function is the span of x-values covered by the graph.
From the graph, we can see that it stretches from x=-7 to x=2.
However, note that at x=-7, the dot is closed (shaded in). In other words, x=-7 <em>is</em> in our domain.
On the other hand, at x=2, the dot is not shaded. So, x=2 is <em>not</em> included in our domain.
Therefore, our domain all are numbers between -7 and 2 including -7 (and not including 2).
As a compound inequality, this is:

So, our answer is A.
Also note that we use x instead of p(x) because the domain relates to the x-variable. If we were to instead find the range, then we would use p(x).
Answer:
<em>It would be -7,-2,3,4.</em>