Answer:
Exercise 1:
base [b]=8cm
perpendicular [p]=6cm
hypotenuse [h]=?
<u>By</u><u> </u><u>using</u><u> </u><u>Pythagoras</u><u> </u><u>law</u>
h²=p²+b²
h²=6²+8²
h=√100
h=10cm
<u>So</u><u> </u><u>another</u><u> </u><u>side's</u><u> </u><u>length</u><u> </u><u>is</u><u> </u><u>1</u><u>0</u><u>c</u><u>m</u>
<u>Exercise</u><u> </u><u>2</u><u>:</u>
base [b]=6m
perpendicular [p]=bm
hypotenuse [h]=8m
By using Pythagoras law
h²=p²+b²
8²=b²+6²
b²=8²-6²
b=√28=2√7 0r 5.29 or 5.3
So height of kite is√<u>28</u><u>o</u><u>r</u><u> </u><u>2√7 0r 5.29 or 5.3 m</u>
Step-by-step explanation:
[Note: thanks for translating]
The statement that describes better about function is "Both functions are increasing, but function g increases at a faster average rate." since option (c) is correct.
Given the table
x f(x)
-2 -46
-1 -22
0 -10
1 -4
2 -1
We have to choose which statement describes better about function
Let us assume 
at x=0, f(0)=-10
So, -10 =a+c
Similarly, by satisfying the above table in the f(x)


So we can say that f(x) is an increasing function.


ln(1/3) < 0
So, g^ \prime (x) > 0
So, g(x) is an increasing function.
For any x∈f(x) and x∈g(x) 
So, g increases at a faster average rate
Thus, Both functions are increasing, but function g increases at a faster average rate.
Learn more about increasing functions here: brainly.com/question/12940982
#SPJ10
Answer: false
Step-by-step explanation:
Answer:
TRUE
Step-by-step explanation:
<u>what is a linear equation?</u>
It is said that a linear equation the equation which can be put in a form where there are variables, and there are coefficients, that are mainly and commonly 'actual numbers'
HOPE THIS HELPS!!
Just put the coefients in to a matrix
1x-6y-3z=4
-2x+0y-3z=-8
-2x+2y-3z=-14
![\left[\begin{array}{ccc}1&-6&-3|4\\-2&0&-3|-8\\-2&2&-3|-14\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-6%26-3%7C4%5C%5C-2%260%26-3%7C-8%5C%5C-2%262%26-3%7C-14%5Cend%7Barray%7D%5Cright%5D%20)
mulstiply 2nd row by -1 and add to 3rd
![\left[\begin{array}{ccc}1&-6&-3|4\\-2&0&-3|-8\\0&2&0|-6\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-6%26-3%7C4%5C%5C-2%260%26-3%7C-8%5C%5C0%262%260%7C-6%5Cend%7Barray%7D%5Cright%5D)
divde last row by 2
![\left[\begin{array}{ccc}1&-6&-3|4\\-2&0&-3|-8\\0&1&0|-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-6%26-3%7C4%5C%5C-2%260%26-3%7C-8%5C%5C0%261%260%7C-3%5Cend%7Barray%7D%5Cright%5D)
multiply 2rd row by 6 and add to top one
![\left[\begin{array}{ccc}1&0&-3|-14\\-2&0&-3|-8\\0&1&0|-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%26-3%7C-14%5C%5C-2%260%26-3%7C-8%5C%5C0%261%260%7C-3%5Cend%7Barray%7D%5Cright%5D)
multiply 1st row by -1 and add to 2nd
![\left[\begin{array}{ccc}1&0&-3|-14\\-3&0&0|6\\0&1&0|-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%26-3%7C-14%5C%5C-3%260%260%7C6%5C%5C0%261%260%7C-3%5Cend%7Barray%7D%5Cright%5D)
divide 2nd row by -3
![\left[\begin{array}{ccc}1&0&-3|-14\\1&0&0|-2\\0&1&0|-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%26-3%7C-14%5C%5C1%260%260%7C-2%5C%5C0%261%260%7C-3%5Cend%7Barray%7D%5Cright%5D)
mulstiply 2nd row by -1 and add to 1st row
![\left[\begin{array}{ccc}0&0&-3|-12\\1&0&0|-2\\0&1&0|-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%26-3%7C-12%5C%5C1%260%260%7C-2%5C%5C0%261%260%7C-3%5Cend%7Barray%7D%5Cright%5D)
divide 1st row by -3
![\left[\begin{array}{ccc}0&0&1|4\\1&0&0|-2\\0&1&0|-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%261%7C4%5C%5C1%260%260%7C-2%5C%5C0%261%260%7C-3%5Cend%7Barray%7D%5Cright%5D)
rerange
![\left[\begin{array}{ccc}1&0&0|-2\\0&1&0|-3\\0&0&1| 4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%7C-2%5C%5C0%261%260%7C-3%5C%5C0%260%261%7C%204%5Cend%7Barray%7D%5Cright%5D)
x=-2
y=-3
z=4
(x,y,z)
(-2,-3,4)
B is answer