Answer:
50m; 0m/s.
Explanation:
Given the following data;
Initial velocity = 20m/s
Acceleration, a = - 4m/s²
Time, t = 5secs
To find the displacement, we would use the second equation of motion;

Substituting into the equation, we have;



S = 50m
Next, to find the final velocity, we would use the third equation of motion;
Where;
- V represents the final velocity measured in meter per seconds.
- U represents the initial velocity measured in meter per seconds.
- a represents acceleration measured in meters per seconds square.
<em>Substituting into the equation, we have;</em>
V = 0m/s
<em>Therefore, the displacement of the bus is 50m and its final velocity is 0m/s.</em>
Answer:
I will answer this in English, we can translate it to:
Why if you charge a mate by an amount of time you are not doing work?
This happens because work is defined as the displacement done by a force:
W = d*F
where W is work, d is the distance, and F is the force.
This means that the amount of time that you are charging your mate does not affect the mechanical work, the only time that you are doing work is when you are lifting him.
The answer to this question is A my friend I hope this helps yah
Answer:
The magnitude of gravitational force between two masses is
.
Explanation:
Given that,
Mass of first lead ball, 
Mass of the other lead ball, 
The center of a large ball is separated by 0.057 m from the center of a small ball, r = 0.057 m
We need to find the magnitude of the gravitational force between the masses. It is given by the formula of the gravitational force. It is given by :

So, the magnitude of gravitational force between two masses is
. Hence, this is the required solution.
Anwser
The strength of a force is usually expressed by its magnitude. We have also to specify the direction in which a force acts.