Answer:
F = 3.6 kN, direction is 9.6º to the North - East
Explanation:
The force is a vector, so one method to find the solution is to work with the components of the vector as scalars and then construct the resulting vector.
Let's use trigonometry to find the component of the forces, let's use a reference frame where the x-axis coincides with the East and the y-axis coincides with the North.
Wind
X axis
F₁ = 2.50 kN
Tide
cos 30 = F₂ₓ / F₂
sin 30 = F_{2y} / F₂
F₂ₓ = F₂ cos 30
F_{2y} = F₂ sin 30
F₂ₓ = 1.20cos 30 = 1.039 kN
F_{2y} = 1.20 sin 30 = 0.600 kN
the resultant force is
X axis
Fₓ = F₁ₓ + F₂ₓ
Fₓ = 2.50 +1.039
Fₓ = 3,539 kN
F_y = F_{2y}
F_y = 0.600
to find the vector we use the Pythagorean theorem
F =
F =
F = 3,589 kN
the address is
tan θ = F_y / Fₓ
θ = tan⁻¹
θ = tan⁻¹ 0.6 / 3.539
θ = 9.6º
the resultant force to two significant figures is
F = 3.6 kN
the direction is 9.6º to the North - East
there is 1000 grams in 1 kilogram
Divide
80/1000 = 0.08
0.08 kilograms is your answer
hope this helps
Answer:
- 256 lbs
Explanation:
The internal axial load at point D can be calculated as the change in the subjected loads. if the magnitude of the horizontal direction = zero
; Then:
internal axial load at point D = Δ P
= -(P₂ - P₁)
= - ( 888 lbs - 632 lbs)
= - 256 lbs
Answer:
Acid mine drainage is dissolved toxic materials wash from mines into nearby lakes and streams.
Explanation:
Acid mine drainage is the flow of acidic water with pH typically between 2 and 4, and high concentrations of other dissolved toxic materials from mines into nearby lakes and streams. It mainly occurs during metal sulfide mining, when the metal sulfide ore such as pyrite (FeS2) is exposed to water and oxygen from air to produce soluble iron and sulfuric acid.
Microorganisms, especially acidophile bacteria like Acidithiobacillus ferrooxidans grow by pyrite oxidation, i.e., oxidizing the Fe²⁺ in pyrite to Fe³⁺, which again react with pyrite and water to produce sulfuric acid. Then the acidic water flows into nearby water sources and reduces the pH value of water in those sources. As a result, heavy metals such as copper, lead, mercury, etc in other mineral ores also get dissolved into the water. The action of acidophile bacteria also increases the rate and degree of acid-mine drainage process.
The acid mine drainage causes water pollution and adversely affect the aquatic plants and animals. It also results in the contamination of drinking water, corrosion of infrastructures such as bridges, etc.