3. 2 meters per second 4. i think object 7. i’ll try to figure it out 8. .77 9. 25km 10. 10m each second
Answer:
The main reason is that very young calves are more noticeable to predators when mixed with older calves from the previous year
Explanation:
For the first part, we are looking for Vf when dy=11.0
Upward is positive, downward is negative.
So <span>Vf = square root [2(-9.8)(11.0) + (18.0)^2] </span>
<span>Vf = 10.4 m/s your answer is correct.
For the part b, t is equals to the time took to reach and dy is equals to 11.0
you did, </span>11= 18t m/s-(1/2) 9.8t^2 then <span>-11 + 18t- 9.8t^2. By quadratic formula, for the way down the answer is 2.9 s while on it's way up, the answer is 0.77 s</span><span>
</span>
The answer is noble gas. Since noble gas are constant and
unreactive. They can still shape compounds with other elements.
Group 15 is also group 5A and Group 17 is also group 7A. Elements in these sets
do not typically form ionic bonds; they are more on creating covalent bonds
since they're non-metals.
Therefore, that leaves us with B. from Group 1. They are metals (but Hydrogen)
which respond violently with water, and they form ionic bonds, for they drop
outer electrons easily.
Answer
is: V<span>an't
Hoff factor (i) for this solution is 1,81.
Change in freezing point from pure solvent to
solution: ΔT =i · Kf · b.
Kf - molal freezing-point depression constant for water is 1,86°C/m.
b - molality, moles of solute per
kilogram of solvent.
</span><span>b = 0,89 m.
ΔT = 3°C = 3 K.
i = </span>3°C ÷ (1,86 °C/m · 0,89 m).
i = 1,81.