1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liula [17]
3 years ago
8

A 0.89 m aqueous solution of an ionic compound with the formula mx has a freezing point of -3.0 ∘c . van't hoff factor?

Physics
1 answer:
BigorU [14]3 years ago
5 0

Answer is: V<span>an't Hoff factor (i) for this solution is 1,81.
Change in freezing point from pure solvent to solution: ΔT =i · Kf · b.
Kf - molal freezing-point depression constant for water is 1,86°C/m.
b -  molality, moles of solute per kilogram of solvent.
</span><span>b = 0,89 m.
ΔT = 3°C = 3 K.
i = </span>3°C ÷ (1,86 °C/m · 0,89 m).

i = 1,81.

You might be interested in
A phase diagram assumes______
PtichkaEL [24]
Choice D, pressure.
8 0
2 years ago
Read 2 more answers
Wel.
Law Incorporation [45]

Answer:

1 is c 2 is a and 3 is b hope that helped!

4 0
3 years ago
suggest an experiment to prove that the rate of evaporation of a liquid depends on its surface area vapour already present in su
gulaghasi [49]
That's two different things it depends on:

-- surface area exposed to the air
AND
-- vapor already present in the surrounding air.

Here's what I have in mind for an experiment to show those two dependencies:

-- a closed box with a wall down the middle, separating it into two closed sections;

-- a little round hole in the east outer wall, another one in the west outer wall,
and another one in the wall between the sections;
So that if you wanted to, you could carefully stick a soda straw straight into one side,
through one section, through the wall, through the other section, and out the other wall.

-- a tiny fan that blows air through a tube into the hole in one outer wall.

<u>Experiment A:</u>

-- Pour 1 ounce of water into a narrow dish, with a small surface area.
-- Set the dish in the second section of the box ... the one the air passes through
just before it leaves the box.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
=============================
-- Pour 1 ounce of water into a wide dish, with a large surface area.
-- Set the dish in the second section of the box ... the one the air passes through
just before it leaves the box.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
=============================
<span><em>Show that the 1 ounce of water evaporated faster </em>
<em>when it had more surface area.</em></span>
============================================
============================================

<u>Experiment B:</u>

-- Again, pour 1 ounce of water into the wide dish with the large surface area.
-- Again, set the dish in the second half of the box ... the one the air passes
through just before it leaves the box.
-- This time, place another wide dish full of water in the <em>first section </em>of the box,
so that the air has to pass over it before it gets through the wall to the wide dish
in the second section.  Now, the air that's evaporating water from the dish in the
second section already has vapor in it before it does the job.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
==========================================
<em>Show that it took longer to evaporate when the air </em>
<em>blowing over it was already loaded with vapor.</em>
==========================================
6 0
3 years ago
In some cases, neither of the two equations in the system will contain a variable with a coefficient of 1, so we must take a fur
Margaret [11]

Answer:

D = -4/7 = - 0.57

C = 17/7 = 2.43

Explanation:

We have the following two equations:

3C + 4D = 5\ --------------- eqn (1)\\2C + 5D = 2\ --------------- eqn (2)

First, we isolate C from equation (2):

2C + 5D = 2\\2C = 2 - 5D\\C = \frac{2 - 5D}{2}\ -------------- eqn(3)

using this value of C from equation (3) in equation (1):

3(\frac{2-5D}{2}) + 4D = 5\\\\\frac{6-15D}{2} + 4D = 5\\\\\frac{6-15D+8D}{2} = 5\\\\6-7D = (5)(2)\\7D = 6-10\\\\D = -\frac{4}{7}

<u>D = - 0.57</u>

Put this value in equation (3), we get:

C = \frac{2-(5)(\frac{-4}{7} )}{2}\\\\C = \frac{\frac{14+20}{7}}{2}\\\\C = \frac{34}{(7)(2)}\\\\C =  \frac{17}{7}\\

<u>C = 2.43</u>

5 0
3 years ago
How long will it take you to ride your bike 120 miles if you are riding at 5mph?
lana66690 [7]
If i'm wrong sorry but i think it is 24hrs
4 0
2 years ago
Read 2 more answers
Other questions:
  • A car is moving down a flat, horizontal highway at a constant speed of 21 m/s when suddenly a rock dropped from rest straight do
    11·1 answer
  • If Vx = 7.00 units and Vy = -7.60 units, determine the magnitude of V⃗ .
    12·1 answer
  • Air is colorless, odorless, and tasteless. describe one way that air can be shown to exist.
    10·1 answer
  • Marcie wants to work as a freelance editor. She purchases a desk, computer, widescreen monitor, and ergonomic keyboard. What kin
    10·1 answer
  • A hiker walks 11 km due north from camp and then turns and walks 11 km due east. What is the total distance walked by the hiker?
    7·2 answers
  • A penny dropped into a wishing well reaches the bottom in 2.50 seconds. What was the velocity at impact?
    7·2 answers
  • Using the diagram shown, what is the magnitude of the resultant of these three forces?
    10·1 answer
  • A flat, circular, copper loop of radius r is at rest in a uniform magnetic field of magnitude B that extends far beyond the edge
    9·1 answer
  • Students were asked to create roller coasters for marbles. The only requirement is that the roller coaster include at least one
    14·1 answer
  • HELP MEEEE!!!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!