Answer:
11.8 m/s
Explanation:
At the top of the hill, there are two forces on the car: weight force pulling down (towards the center of the circle), and normal force pushing up (away from the center of the circle).
Sum of forces in the centripetal direction:
∑F = ma
mg − N = m v²/r
At the maximum speed, the normal force is 0.
mg = m v²/r
g = v²/r
v = √(gr)
v = √(9.8 m/s² × 14.2 m)
v = 11.8 m/s
First let’s pick one at random
Less than 5 percentile
That means they lined 100 kids up and less than 5% of them are that certain weight.
So if you apply this to every option you will see the answer is
A). Less than 5 percentile
Answer:
I think u have to do 580N times 40KG
Answer:
4.32
Explanation:
The centripetal acceleration of any object is given as
A(cr) = v²/r, where
A(c) = the centripetal acceleration
v = the linear acceleration
r = the given radius, 1.9 m
Since we are not given directly the centripetal acceleration, we'd be using the value of acceleration due to gravity, 9.8. This means that
9.8 = v²/1.9
v² = 1.9 * 9.8
v² = 18.62
v = √18.62
v = 4.32 m/s
This means that, the minimum speed the cup must have so as not to get wet or any spill is 4.32 m/s
Answer:
481.76 J/mol
133.33 K
Explanation:
= Avogadro's number = 
Change in enthalpy is given by

Entropy is given by

Latent heat of fusion is given by

The latent heat of fusion is 481.76 J/mol
Melting point is given by

Melting occurs at 133.33 K